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ABSTRACT
AUVs typically communicate with scientists on the surface
over an unreliable acoustic channel, resulting in very low
data throughput. While there are several examples of scien-
tific data, even imagery, being successfully transmitted over
high rate acoustic links, channel coding methods with high
rates of error-correction are often employed that limit data
throughput to tens or a few hundred bits per second. Little
research exists into appropriate methods for image and data
compression for acoustic links at these very low rates.

We recently have experienced great success using compres-
sion techniques based upon the Set Partitioning in Hierar-
chical Trees (SPIHT) embedded coding method, and feel
they are particularly suited to underwater data. In par-
ticular, SPIHT provides a fully embedded coding method;
truncating the encoded bitstream at any point produces the
optimal encoding for that data length. This allows fine-
resolution imagery to build on previously transmitted low-
resolution thumbnails. For time-series data, we have devel-
oped a method for quantizing data to emphasize more im-
portant sections, such as the most recently collected data.

In this paper we describe how these methods can be ap-
plied to compress scalar environmental data and imagery for
communication over acoustic links. We also the present ini-
tial results of sea trials performed near Rota in the Common-
wealth of Northern Marianas Islands, during which images
were captured, compressed and transmitted in-situ.
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Figure 1: At top, SeaBED AUV prior to launch near
Rota, CNMI, about 1500 miles south of Tokyo; AUV
mission track overlaid on bathymetry at bottom.

1. INTRODUCTION
Free of a physical tether to the surface, Autonomous Un-

derwater Vehicles (AUVs) are able to reach and explore ar-
eas that would be hazardous, or impossible, with more tra-
ditional tethered or human occupied underwater vehicles.
AUVs have explored the bottom of Antarctic glaciers and
Arctic ice sheets, and points dotting the oceans between. In
each of these missions, the AUV returned with data to be
analyzed by surface operators, before being sent back down
for additional missions. There remains no substitute for the
high-level decision making skills of a human operator when
it comes to mission planning.

Unfortunately, the freedom to operate without a physical
tether comes at a cost. The ocean imposes severe limitations
on wirelessly communicating data to the surface including
low available bandwidth and long propagation delays [23,



1]. AUV and surface ship noise combine with environmental
conditions to cause a host of problems including frequent
packet loss. These challenges are made worse by operating
over large distances and by environmental conditions such
as seafloor makeup and water depth.

Effective data rates for acoustic modems used to commu-
nicate underwater are routinely as low as tens of bits per sec-
ond. Connections may be unpredictably intermittent, with
long periods of no communication. Time-multiplexing of the
channel for Long Baseline (LBL) navigation, or round-robin
communication of multiple vehicles, lowers effective bit-rates
for each vehicle even further.

Over the course of a dive, a single AUV can easily col-
lect one million samples of scalar environmental data, rang-
ing from temperature data to salinity, and from measured
methane concentrations to vehicle depth. The same vehicle
may easily capture tens of thousands of photos, and sonar
imagery. This sensor data is typically inaccessible until after
the vehicle has been recovered, since low transmission rates
have largely limited vehicle telemetry to vehicle state and
health information. Temperature and reduction potential
(Eh) data acquired during two SeaBED AUV dives, shown
in Figure 2, are used to illustrate compression within this
paper.
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Figure 2: Sample scalar environmental data. Tem-
perature data was collected over an archaeological
site near Santa Barbara, California using a SeaBED
AUV The reduction potential data was collected as
part of the Arctic Gakkel Vent Expedition [12], and
provided by Dr. Koichi Nakamura.

As autonomous robotics moves toward the study of dy-
namic processes with multiple vehicles, there is an increas-
ing need to compress the large volumes of data collected by
AUVs for transmission to human operators, and to other ve-
hicles. Vehicle recoveries from the open ocean are challeng-
ing and risky for both vehicles and operators. Additionally,
vehicles may take hours to ascend from missions in the deep
sea. Methods for retasking autonomous vehicles during a
deployment with new high-level mission goals have begun
to be developed and tested on multiple vehicles [11, 28].

While the underwater community has previously inves-
tigated transmission of imagery and video data over high
throughput acoustic links, there has been a relative lack of
algorithmic transfer from the data compression community
for low-throughput environments. In this paper, we present

a systems level approach to data compression, well suited for
use with AUVs. We evaluate this approach against scalar
data from two different sensors and dives, shown in Figure 2.
Finally, we show recently acquired results of applying these
same methods, on-line, to images captured by a SeaBED-
class[22] AUV operating near Rota in the Commonwealth of
the Northern Mariana Islands (CNMI).

2. PREVIOUS WORK
Compression techniques are divided into two categories;

lossless compression methods that allow faithful reconstruc-
tion of the original data, and ‘lossy’ methods which allow
reconstruction of an approximation. There are numerous
general-purpose lossless algorithms, such as LZ77[29] and
Lempel-Ziv-Welch (LZW)[27]. While generic lossless algo-
rithms perform well with plain text and other widely used
document formats, they do not perform particularly well on
numerical scientific data[27].

As a result, techniques specifically for compressing floating-
point scientific data have been developed. However, even re-
cent lossless algorithms yield on the order of 2:1 compression
for high entropy time-series data[2]. Compressing the exam-
ple data using each of the methods mentioned above actually
resulted in significantly better compression ratios from the
general algorithms in one case than from the floating-point
specific algorithms, as shown in Table 1.

Method
Redox Potential Pot. Temp.

Size (B) Ratio Size (B) Ratio

Raw data 115200 — 57208 —

gzip 29770 387.0% 38173 149.9%

bzip2 24300 474.1% 40318 141.9%

FPZip 77460 148.7% 35475 161.3%

FPCompress 88345 130.4% 41820 136.8%

Table 1: Comparison of compression ratios for sev-
eral lossless compression methods. FPCompress[2]
and FPZip[13] were evaluated using source code
from the authors’ websites. Two hours of reduc-
tion potential data sampled at 2Hz, including the
segment shown in Figure 2, and a two-hour section
of potential temperature data sampled at 1Hz (not
shown) were used for the comparison.

One widely used standard for underwater vehicle com-
munications is the Compact Control Language (CCL)[24],
which defines a number of simple methods for encoding in-
dividual samples of depth, latitude, bathymetry, altitude,
salinity, and other data. CCL relies only upon quantization
to provide compression and makes no use of the inherent cor-
relation between successive samples from most instruments.

In 1996, Eastwood et al. proposed predictive coding meth-
ods that could be used in concert with these methods to
improve performance[5]. Schneider and Schmidt have incor-
porated predictive coding into their recent work[20], sending
up a mean value followed by smaller, quantized, delta val-
ues. While this provides some compression, transform codes
allow higher efficiency for a bit more computational effort.

Transform compression methods typically follow a stan-
dard pattern. First, a source coder such as the Discrete
Cosine Transform (DCT) or Discrete Wavelet Transform



(DWT) exploits the inherent correlation within most data,
and concentrates the energy of the signal into a sparse set
of coefficients. Next, these coefficients are quantized and
entropy encoded [16]. Wavelet compression is described by
Donoho et al. as being especially appropriate for functions
that are “piecewise-smooth away from discontinuities” [4].
While not all sensors emit signals of this form, this is an apt
description for many oceanographic sensors.

There has been extensive experimentation with the trans-
mission of still and video imagery over relatively high band-
width (∼1-10kbps) acoustic tethers[25, 15]. In addition,
there has been some previous study on the application of
wavelet compression techniques to underwater images, video,
and acoustic imagery[9, 10, 8]. In particular, Eastwood et
al. evaluated the performance of an early Wavelet-based
compressor, EPIC, in 1996[5]. Craig Sayers, and others at
the University of Pennsylvania, developed techniques for se-
lecting specific frames and ‘regions of interest’ from a video
sequence that best describe an ROV manipulator and envi-
ronment state, and transmitted these regions to surface op-
erators over a 10 kbps acoustic tether as JPEG images[19].

3. APPROACH
Said and Pearlman developed and first introduced SPIHT

in the late 1990’s[17]. By coupling their coding method
with the DWT, SPIHT can be used as a data compression
technique for both time-series scalar telemetry and imagery.
SPIHT has several characteristics that make it particularly
suited to compression of underwater data. In particular,
the algorithm is straightforward and can be performed ef-
ficiently on general purpose processors, and provides high
compression ratios for a variety of real-world data. If high
framerate processing is necessary, high-speed hardware im-
plementations of the image compressor have been developed
[7].

More uniquely, SPIHT provides a fully embedded cod-
ing method; truncating the encoded bitstream at any point
produces the optimal encoding for that data length. This
feature is not shared by all, or even most, compression meth-
ods; half of a zip file does not allow easy restoration of half
the contents, and half of a JPEG image is not immediately
viewable at reduced quality. This makes it well suited to the
underwater environment where computation ability is lim-
ited, communication is packetized, and transmission rates
can vary from packet to packet, as it allows compression to
be performed independent of the target transmission rate.
Messages sent to nearby AUVs for multiple vehicle collab-
oration could be sent at a higher rate, and those destined
for a surface ship or transmission over longer distances can
be sent at a more conservative rate without any need for
recompression of the data. Low fidelity color image thumb-
nails, transmitted at rates as low as a few hundred bits per
image, can later be used as a basis for more refined versions.
If the entire bitstream is sent, the compression process is
entirely reversible and results in the original data with no
loss of precision.

SPIHT can be used effectively on scalar data, imagery,
or even 3D volumetric data. For simplicity, we will discuss
the one dimensional approach first, and then extend to im-
agery. Our approach to data compression consists of three
discrete steps. First, data is encoded using the DWT into
the wavelet domain. Next, these (typically floating-point)
coefficients are requantized as signed fixed point numbers.

Finally, this fixed-point representation is encoded using the
SPIHT algorithm, which results in a sequence of bits. This
result is truncated to the desired length and transmitted.
Once received, the truncated bitstream is simply decoded
into a signed fixed point approximation to the wavelet co-
efficients. The Inverse DWT is then performed on these
coefficients, resulting in an approximation to the original
data.

3.1 Discrete Wavelet Transform (DWT)
Effective source encoders concentrate most of the energy

of the original signal into a smaller number of coefficients.
These coefficients will no longer be correlated across different
input sequences, as they could then be compressed further
[18]. The DWT, a linear transform, is widely used as a
source encoder for image and biomedical data. For a well-
written introduction to wavelets, DeVore and Lucier provide
an excellent reference [3].

The DWT is calculated by applying a low-pass filter to
the input signal, generating one set of coefficients, and then
applying a high-pass filter to the input signal to generate
a second set of coefficients. Both sets of coefficients are
downsampled by two, resulting in the same number of coef-
ficients as the original input signal had samples. Calculating
the DWT of a signal thus results in two distinct sets of co-
efficients; a decimated version of the signal known as the
‘approximation coefficients’, and a set of ‘detail coefficients’
which contain the higher-frequency information lost during
decimation. Figure 3 shows the full wavelet decomposition
of a short signal of 32 samples.

¼ Scale

¼ Scale

Level Coefficients Level Contribution Cumulative Reconstruction

Figure 3: Wavelet coefficient magnitude is shown
by the stem plots at left. The middle column indi-
cates the sum of the inverse transformed wavelets at
that level of detail. By cumulatively summing the
levels (right column), increasingly detailed approxi-
mations to the original signal are produced until the
original signal is recovered at the bottom right.

The DWT is typically (as in Figure 3) applied recursively
to the approximation coefficients, generating several levels
of detail coefficients; each level of detail coefficients then
represents the detail lost by decimation at that iteration of
the transform. Each detail coefficient in the resulting set is
localized in time as well as being associated with a ‘scale’, or
level of detail. The detail coefficients will generally be low



in magnitude, except near areas of change for a given scale.
This sparsity facilitates efficiently compressing the data.

3.2 SPIHT Coding
While the SPIHT algorithm is straightforward to imple-

ment, it has a large number of details addressed by the au-
thors in their initial paper and in a later book chapter [14].
As we believe our implementation to be a faithful imple-
mentation of their description, we do not seek to convey
all details of the algorithmic implementation. This section
instead provides an intuitive understanding of how SPIHT
works, and what information the resulting bitstream con-
tains. Details of our field trial are discussed in Section 4.2.

SPIHT, and its progenitor the embedded zerotree wavelet
(EZW) [21] algorithm, treat the wavelet decomposition as a
tree of coefficients, rooted at the lowest level detail coeffi-
cients. Many real signals that have large magnitude coeffi-
cients at high levels also have higher magnitude coefficients
at lower levels. SPIHT exploits this cross-level correlation
through a clever sorting algorithm. As the SPIHT authors
write in their tutorial[14, p95] set partition coding

. . . is a procedure that recursively splits groups
of [coefficients] guided by a sequence of threshold
tests, producing groups of elements whose mag-
nitudes are between two known thresholds.

A SPIHT-encoded bitstream consists of a sequence of refine-
ment bits and sorting bits, interlaced in a data-dependent
order. Specifically, there are five things that a single bit in
a SPIHT bitstream could represent:
• Sorting Bits

– Whether a coefficient is greater in magnitude than
the current threshold, or ‘significant’

– Whether any descendant is significant

– Whether any grand-descendant is significant

• Refinement Bits

– The sign of a coefficient

– A single bit of a coefficient’s magnitude

16b 20b 24b 28b 32b

36b 40b 44b 48b 52b 56b

60b 64b 68b 72b 76b 80b

84b 88b 92b 96b 100b 104b

108b 112b 116b 120b 124b 128b

. Magnitude Increased Magnitude Decreased Number of bits output18b

Figure 4: A wavelet decomposition at upper left, fol-
lowed by the reconstruction from increasingly length
SPIHT bitstreams. As the number of bits grows, the
reconstruction is closer to the original coefficients.
Coefficient signs have not been have been depicted.

Refinement bits provide a continually improving estimate
for the magnitude of a wavelet coefficient. Sorting bits pro-
vide an efficient way to identify high magnitude, and there-
fore important, wavelet coefficients. Figure 4 shows the pro-
gressive reconstruction of a set of DWT coefficients using an
increasing number of (indicated) bits.

3.3 Image Compression
SPIHT was originally designed for photo compression, and

can be used on high dimensional datasets as well. Two-
dimensional data like imagery is simply transformed with
the 2D form of the DWT, and then SPIHT coded following
a similar process as the 1D version. To encode color images,
we first transformed each image to the Y’UV color space.
Each color plane was then coded seperately to a fixed num-
ber of bytes, with the U and V color planes receiving a much
smaller allowance than the luminance plane.

4. RESULTS
Encoding the scalar data with SPIHT resulted in a sig-

nificant improvement in data fidelity across a wide range of
transmission rates, when compared to simple subsampling.
The received signal is both qualitatively, and quantitatively
(RMS error), more similar to the original data than inter-
polated data points, as shown in Figure 5. As a side-effect,
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Figure 5: Comparison of SPIHT encoding with sub-
sampling methods for Temperature data (top) and
reduction potential data (bottom).

the reconstructed signal has been de-noised; discarding low-
magnitude coefficients is an effective form of noise reduction
[26].

In real-world implementations for in-situ encoding, there
are two key parameters that can be adjusted during encod-
ing of scalar data. The number of bytes to send up in each
packet (throughput), and the number of data samples to en-
code in each time (frequency of transmission). Assuming a
fixed frequency of 1024 samples (approximately 5-10 min-
utes between transmissions in this case) yields the encoding
results shown in Figure 6. Decreasing the transmission fre-
quency can greatly increase the compression ratio, as shown
in Figure 7.
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Figure 6: Comparison of signal reconstruction at
two different sizes, for both test signals.

4.1 Time-Varying Quantization
In [17] wavelet coefficients are requantized into a standard

sign-magnitude representation before SPIHT coding. What
level and method of quantization is appropriate for a given
signal depends upon the dynamic range, maximum and min-
imum values, and acceptable level of error for a time-series;
the quantization is typically constant for all wavelet coeffi-
cients.

Occasionally, it may be of value to provide higher fidelity
to certain sections of scalar data. Accenting recent data
would allow decisions to be made about nearby features
of interest before they are left far behind. Additionally, if
the time windows for transmitted data overlapped some-
what from transmission to transmission, missing data due
to packet loss could be filled in with future, lower fidelity,
data.

One approach that holds some promise is to vary the quan-
tization method for the wavelet coefficients using some cost
function. This strategy has been employed to generate Fig-
ure 8; wavelet magnitudes were artificially prescaled prior
to encoding them with SPIHT. As SPIHT prioritizes higher
magnitude coefficients, this leads to greater detail being con-
veyed in those areas. Upon decoding, reverse scaling is ap-
plied before the inverse wavelet transform.

Figure 8 was generated using the logarithmically increas-
ing sequence of quantization coefficients shown in Equation
1, where n is the number of coefficients. In the Python pro-
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Figure 7: Encoding more samples in each transmis-
sion improves the compression ratio, as it exploits
the sparsity of the data, yielding higher quality for
a given data rate.
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gramming language, the case of n > 1 is more clearly written
as logspace(16, 18, n, base = 2).

cn =

{
218 n = 1

2{16+
2x

n−1
: x∈N0, x<n} n > 1

(1)

While our cost function was purely time-based, this tech-
nique could be used with any function that employs infor-
mation shared by the encoder and decoder.

4.2 Photos
In February of 2010, we tested these methods during a re-

search expedition aboard the NOAA Ship Oscar Elton Sette,
between Guam and the Commonwealth of Northern Mariana
Islands. A SeaBED-class AUV was equipped with a WHOI
Micro-Modem [6] for communication and navigation, and a
five Megapixel high dynamic range Prosilica camera operat-
ing at a windowed resolution of 2048x2048 in Bayer RGGB
mode.

Figure 9: First six seafloor images returned by AUV.

One background thread of software operation compressed
a new image every few minutes, thus ensuring it would not
interfere with critical tasks. Prior to compression, a sin-
gle 2048x2048 RGGB image was converted to a 1024x1024
Y’UV image and seperated into color planes. The images

were encoded to a total size of 4032 bytes per image before
being segmented into 63-byte “mini-frames” for transmis-
sion. During transmission, mini-frames were prefixed with
a one byte index identifying the frame offset in the image
data, and concatenated into acoustic packets at the native
size for the PSK encoding. The surface ship would inter-
mittently report the mini-frames that it had received, which
were then removed from queue on the AUV. When all mini-
frames for an image had been acknowledged, the AUV be-
gan transmission of a newly compressed frame. A total of 15
images were received, 4 of which were completely black as
they were captured during descent or ascent. A 16th image
was garbled during transmission due to a design error in our
(admittedly simple) acknowledgement protocol. The eleven
non-black images received are shown in Figures 9 and 10.

Figure 10: The final five non-black seafloor images
returned by the AUV during field trials.

The fifteen images were transmitted over a 3.75 hour pe-
riod, resulting in about fifteen minutes per image. Note that
this is largely due to packet loss and scheduling in real world
conditions; the PSK encodings that we employed had max-
imum theoretical burst rates of 520 and 5400 bits per sec-
ond, compared with the 35 bits per second we achieved. The
cover image, Figure 1, illustrates the transmission progress
of each image as the vehicle proceeded through its mission.
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Figure 11: The same image encoded at four different
sizes using SPIHT. 81% of the transmitted data is
used to reconstruct the luminance, the rest describes
the image color channels.

Finally, Figure 11 illustrates a single 1024x1024 pixel color
image encoded at four drastically different levels of compres-
sion, to give an indication of what transmission at different
rates would have looked like.

5. CONCLUSIONS
Previous work has established the utility of the DWT

transform in oceanographic data compression and analysis,
but there has been more limited coverage of complete com-
pression solutions for oceanographic data. Set partitioning
methods, such as those based upon SPIHT and presented
here, provide a simple and promising method for perform-
ing compression on a variety of one dimensional numerical
data, and real-world images. Even at extremely high com-
pression ratios, SPIHT provides human-interpretable data
to surface operators.

The use of a fully embedded representation for science
telemetry enables recepients to request additional detail for
areas of interest, whether the recipient is a human on the
surface or an algorithm running on a different network node.
As AUV technology advances towards truly autonomous
decision-making, providing surface ’supervisors’ with data
to complement these decisions will open new doors.
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[23] M. Stojanović. Recent advances in high-speed
underwater acoustic communications. IEEE Journal of
Oceanic Engineering, 21(2):125–136, Apr. 1996.

[24] R. Stokey, L. Freitag, and M. Grund. A Compact
Control Language for auv acoustic communication.
Oceans 2005 - Europe, 2:1133–1137, June 2005.

[25] M. Suzuki, T. Sasaki, and T. Tsuchiya. Digital
acoustic image transmission system for deep-sea
research submersible. Oceans 1992, Proceedings of the
MTS/IEEE, 2:567–570, Oct 1992.

[26] M. Vetterli. Wavelets, approximation, and
compression. IEEE Signal Processing Magazine, pages
59 – 73, Sept. 2001.

[27] T. A. Welch. A technique for high-performance data
compression. Computer, 17(6):8–19, June 1984.

[28] D. R. Yoerger, M. V. Jakuba, A. M. Bradley, and
B. Bingham. Techniques for deep sea near bottom
survey using an autonomous vehicle. International
Journal of Robotics Research, 26(1):41–54, 2007.

[29] J. Ziv and A. Lempel. A universal algorithm for data
compression. IEEE Transactions on Information
Theory, 23(3):337–343, May 1977.


