Wavelet Compression with Set Partitioning for Low Bandwidth Telemetry from AUVs

The SeaBED Family

933 MHz x86 CPU

Ubuntu Linux
C/C++/Perl/Python
10kHz MicroModem + PSK
2km or 6km depth
Cameras + Multibeam
Flexible sensor package

WHOI Acoustic MicroModem

Three Acoustic Encoding Methods

FH-FSK	1/15 Spreading PSK	9/14 Rate Block Code PSK
10Bps Maximum Rate	62Bps Maximum Rate	662Bps Maximum Rate
Each transmission is: 1 Frame @ 32 Bytes	Each transmission is: 3 Frames @ 64 Bytes	Each transmission is: 8 Frames @ 256 Bytes

Ongoing usage for vehicle health telemetry.

Used for higher-rate transmission of compressed data described here.

Requires DSP co-processor on receiver side.

Environmental Sensors

Sidescan Sonar Imagery

Photographs

Low Throughput

In real-world conditions, effective throughput of acoustic modem can be 10-100 bits per second (or worse).

The Problem

Data is typically unavailable until after recovery.

Effective collaboration requires information sharing, whether from sub-sea to surface or sub-sea to sub-sea.

How can underwater vehicles effectively share multimodal information at these rates?

Packetized Communications

We have historically used CCL and similar methods, making each acoustic packet fully self contained.

Byte	Description		
0	Type: CCL_SCIXY_OWTT		
1			
2 3	X position in Meters		
4			
5	Y position in Meters		
6			
7	Heading in $\frac{360}{255}$ ths of a degree		
8	Depth in Meters		
9			
10	Altitude in Meters		
11			
12	Goal ID		
13			
14			
15	Goal X position in Meters		
16			

CCL 'scixy_owtt' Frame

17	
18	Goal Y position in Meters
19	
20	Goal Depth in Meters
21	
22	LBL#3 Travel Time in Sec.
23	
24	LBL#4 Travel Time in Sec.
25	
26	
27	
28	Arbitrary Science Payload
29	
30	
31	One-way Travel Time data

Why?

Surface operators get antsy if they don't know what the AUV is doing. Even when it's working fine.

As vehicle reliability increases, this is changing.

MOODS HOLF

Transform Compression

Transform compression employs inherent data sparsity in some transformed basis.

It is easier to compress *more* (correlated) data than less.

Thus, the less frequently you share information the more efficiently you can share it.

Fully Embedded Coding

Fully embedded coding – A high quality version of encoded data shares first N bits *identically* with a poor quality encoding of length N.

Low Quality Preview

Medium Quality Representation

High Quality Representation

If preview is interesting, recipients can request additional packets to obtain high quality sections of signals or images.

SPIHT

Set Partitioning In Hierarchical Trees *

Operates in Wavelet Domain

• Wavelets have been shown to provide an efficient, sparse representation for a variety of real-world signals.

Dimensionality-Independent

Same encoding works for CTD data, Imagery, Volumetric data

Embedded Coding

- Low-fidelity versions are *identical* to the beginning of high-fidelity
- Each additional (in-order) byte improves the estimate
- Sending up a higher quality version doesn't require 'starting over'

* Said and Pearlman, 1996

Brief Introduction to SPIHT

Step 1: Transform signal with Discrete Wavelet Transform.

```
threshold = get_starting_threshold()
while threshold > 0:
    sort(threshold)
    refine(threshold)
    threshold >>= 1
```

Step 2: iterates over a decreasing threshold value, identifying "significant" wavelet coefficients larger than the threshold.

Brief Introduction to SPIHT

Sorting Bits Indicate

- Is a coefficient "significant"?
- Are any descendants?
- Any grand-descendant?

Refinement Bits Indicate

- The sign of a coefficient
- Coefficient magnitude

Reduction Potential - 28 Bytes

SPIHT Encoded with 28 Bytes

Reduction Potential - 56 Bytes

SPIHT Encoded with 56 Bytes

Reduction Potential - 112 Bytes

SPIHT Encoded with 112 Bytes

Temperature - 28 Bytes

SPIHT Encoded with 28 Bytes

Temperature - 56 Bytes

SPIHT Encoded with 56 Bytes

Temperature - 112 Bytes

SPIHT Encoded with 112 Bytes

Sidescan Imagery

Sidescan Imagery

Sidescan Imagery

Live Trials near Rota

North of Guam, 1600mi east of the Philippines

Depth $100m \rightarrow 350m$

Ship Range 100's of meters

Transducer
Single ITC
Hemispherical

Mission Outline

Land on a small plateau and work down, observing fisheries health.

System Overview

SeaBED + Receiver Code

SPIHT

Ad-Hoc Segmentation Implementation

Implemented by WHOI MicroModem

WIIWNet, 30 S

OSI Model					
	Data unit	Layer	Function		
		7. Application	Network process to application		
Host layers	Data	6. Presentation	Data representation, encryption and decryption, convert machine dependent data to machine independent data		
		5. Session	Interhost communication		
	Segments	4. Transport	End-to-end connections and reliability,Flow control		
	Packet	3. Network	Path determination and logical addressing		
Media layers	Frame	2. Data Link	Physical addressing		
layers	Bit	1. Physical	Media, signal and binary transmission		

From Wikipedia: OSI model

27

System Implementation

SeaBED Code

SeaBED vehicle capturing image every 4 seconds

- \rightarrow 2048 x 2048 four megapixel image
- → Bayer-coded / "Raw" image

Separate encoder thread

- → Rate limited sleeps for a few minutes after encoding
- → Downsamples RAW image to 1024 x 1024 RGB image
- → RGB converted to Y'UV colorspace
- → Y Channel encoded to fixed size of 2016 Bytes
- → U,V Channels encoded to fixed size of 1008 Bytes

System Implementation

Ad-Hoc Segmentation Implementation

4032 Byte Image segmented into sixty-four, 63-Byte fragments

Single byte "offset" index prepended to fragment

64-Byte fragments packed into modem frames, and transmitted

uM Rate 2: 64B Frames uM Rate 5: 256B Frames

System Implementation

Receiver Code

Fragments written to file, at offset, as they are received

No attempt to display partial transmissions was made for this test

ACK's were hand-crafted and transmitted (list of offset IDs)

Lack of transmission or image ID proved problematic

Original

4032 Bytes

Variable Quantization

Step 1: Transform signal with Discrete Wavelet Transform.

Step 1.5: Pre-scale wavelet coefficients by objective function

```
threshold = get_starting_threshold()
while threshold > 0:
    sort(threshold)
    refine(threshold)
    threshold >>= 1
```

Step 2: iterates over a decreasing threshold value, identifying "significant" wavelet coefficients larger than the threshold.

Which "rate" should I use? Why must they be fixed?

Thank You.

chrismurf@whoi.edu

