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Abstract

As analysis of imagery and environmental data plays a greater role in mission con-
struction and execution, there is an increasing need for autonomous marine vehi-
cles to transmit this data to the surface. Without access to the data acquired by a
vehicle, surface operators cannot fully understand the state of the mission. Com-
municating imagery and high-resolution sensor readings to surface observers re-
mains a significant challenge – as a result, current telemetry from free-roaming
autonomous marine vehicles remains limited to ‘heartbeat’ status messages, with
minimal scientific data available until after recovery. Increasing the challenge, long-
distance communication may require relaying data across multiple acoustic hops
between vehicles, yet fixed infrastructure is not always appropriate or possible.

In this thesis I present an analysis of the unique considerations facing telemetry
systems for free-roaming Autonomous Underwater Vehicles (AUVs) used in explo-
ration. These considerations include high-cost vehicle nodes with persistent stor-
age and significant computation capabilities, combinedwith human surface opera-
tors monitoring each node. I then propose mechanisms for interactive, progressive
communication of data across multiple acoustic hops. These mechanisms include
wavelet-based embedded codingmethods, and a novel image compression scheme
based on texture classification and synthesis. The specific characteristics of under-
water communication channels, including high latency, intermittent communica-
tion, the lack of instantaneous end-to-end connectivity, and a broadcast medium,
inform these proposals. Human feedback is incorporated by allowing operators to
identify segments of data that warrant higher quality refinement, ensuring efficient
use of limited throughput. I then analyze the performance of these mechanisms
relative to current practices.

Finally, I present CAPTURE, a telemetry architecture that builds on this analy-
sis. CAPTUREdraws on advances in compression and delay tolerant networking to
enable progressive transmission of scientific data, including imagery, across mul-
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tiple acoustic hops. In concert with a physical layer, CAPTURE provides an end-
to-end networking solution for communicating science data from autonomousma-
rine vehicles. Automatically selected imagery, sonar, and time-series sensor data
are progressively transmitted across multiple hops to surface operators. Human
operators can request arbitrarily high-quality refinement of any resource, up to an
error-free reconstruction. The components of this system are then demonstrated
through three field trials in diverse environments on SeaBED, OceanServer and
Bluefin AUVs, each in different software architectures.

Thesis Supervisor: Dr. Hanumant Singh
Title: Associate Scientist, WHOI
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CHAPTER 1

Introduction

This thesis presents a novel method for communicating scientific telemetry from

underwater vehicles. The contributions of this thesis include: a multi-hop relay

protocol incorporating advances from thefield ofDelayTolerantNetworking (DTN)

and designed for Autonomous Underwater Vehicles (AUVs), a method for incor-

porating human feedback into the selection of science telemetry, identification of

and extensions to compression techniques well suited to underwater data, a novel

compression scheme based on texture classification and synthesis, an architecture

for AUV telemetry that integrates these advances, and the demonstration of the ar-

chitecture’s viability through a prototype system andmultiple field tests on diverse

vehicles.

This telemetry architecture, nicknamed CAPTURE, has been designed to en-

able progressive communication of rich scientific data from underwater vehicles to

human operators on the ocean surface, across a sequence of free-swimming relay

vehicles. Progressive transmission provides operators with a gradually improv-

ing approximation to environmental data, sonar imagery, or photographs, over the

course of a normal mission. Operator feedback can be used to obtain arbitrarily

high-quality refinement of specific sections of interesting data, up to an error-free

reconstruction. The use ofmultiple relay vehicles allow efficient long-distance com-

munication, even with contemporary fixed-power acoustic modems.
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1.1 Autonomous underwater exploration

For those who study the ocean, AUVs provide unique capabilities to explore what

can be an extremely forbidding environment. Free of a physical surface tether,

AUVs are able to perform surveys without human intervention, and many kilome-

ters from a surface vessel. The Sentry[132] AUV, developed atWoodsHoleOceano-

graphic Institution (WHOI), is capable of traveling nearly one hundred kilometers

on a single charge, and the Tethys vehicle developed at Monterey Bay Aquarium

Research Institute (MBARI) is expected to have a range of nearly two thousand

kilometers through extensive optimization of the sensor suite and hydrodynamics.

AUVs enable scientists from across the oceanographic disciplines to answer ques-

tions about the health of our nation’s fisheries[121] or learn the secrets of ancient

ship and airplane wrecks[35]. AUVs have operated in environments as diverse as

lively Puerto Rican coral reefs[4], the world’s longest aqueduct[112], hydrothermal

vents along the mid-oceanic ridges[133], and the Arctic seafloor[107].

This independence from a surface ship is a significant asset in polar environ-

ments, where surface movement of any sort is challenging and slow work. AUVs

have proven to be particularly effective tools for under-ice research since they can

range freely for great distances under the ice. Recently intensified interest in the po-

lar regions has driven a number of AUVmissions in both theArctic andAntarctic[75,

59, 60]. Fig. 1-1 shows the SeaBED AUV preparing to survey the underside of an

Antarctic ice-flow in 2010. While the earliest of these missions involved skirting

the edges of ice flows, autonomous vehicles now venture farther and farther under

ice from their launch point as climate scientists seek answers to vexing questions

about the causes and progress of climate change[3].

The Nioghalvfjerdsfjorden Glacier, shown in Fig. 1-2, poses just such questions.

The melting of Greenland ice sheets, driven by climate change, currently accounts

for nearly a one millimeter rise in sea level each year[68]. A significant driver of

this melting is believed to be warm subtropical waters at the ocean / ice / land

triple-point[113], yet efforts to characterize these processes by any means are ham-
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Figure 1-1: The SeaBEDAUV preparing for an under-ice mission in Antarctica dur-
ing the 2010 IceBELL expedition.

pered by an ice thickness of 100m or more, as shown in Fig. 1-2a. The nearest

feasible access point for a vehicle is a small rift, shown in Fig. 1-2b, tens of kilome-

ters away. An AUV could be inserted there and travel horizontally to the area of

interest. Should that AUV become entrapped, or suffer a mechanical failure under

the one hundred meter thick ice tongue, the environmental data it collected would

likely be irrecoverable. This is in stark contrast with other field exploration robots,

such as the Mars rovers[15, 2], which have returned incredibly valuable scientific

data despite every vehicle remaining behind on the Martian surface.

1.2 Operator involvement

AUVs, by their very nature, do not require active human intervention to complete a

mission. As the mission progresses, AUVs typically transmit small ‘heartbeat mes-

sages’ containing the current status of the mission and health of the vehicle. These
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(a) Cross-section, Nioghalvfjerdsfjorden Glacier (b) Rift, Nioghalvfjerdsfjorden Glacier

Figure 1-2: (Left) Cross section of the glacier showing the ocean-ice-land triple
point, circled in red, and the rift where AUVs could be inserted. (Right) The rift
in the glacier up close. The rift is a crack in the roughly 100m thick floating ice
tongue (walls visible on either side), which is covered in a 10 inch layer of sea-ice.
Photo courtesy Eric Philips, IceTrek.

messages are closely watched in realtime by human operators to ensure the safety

of the vehicle, but they have historically been of little scientific value. Communica-

tion constraints ensure that the vast majority of science data is not available until

the vehicle has surfaced at the completion of the mission. If AUVs were able to

communicate acquired science data to surface operators, in a manner such as this

thesis enables, operators would be able to review some of that data before mission

completion and adjust the goals of the vehicle while it is still deployed and near the

regions of interest. While the vehicle is operating normally, these ship-board oper-

ators currently represent an underutilized resource, waiting hours for the vehicle

to return.

The opportunity presented by involving surface operators more closely into

AUV missions was recently demonstrated during an environmental survey of the

2010 Deepwater Horizon oil spill by the Sentry AUV. During that mission, individ-

ual readings from an onboard mass spectrometer were transmitted to the surface

ship[53]. Previous work by this author[74] was used for the rendering and dis-

play of the data as it was received. Even this limited, highly subsampled view of

the data led to site selection and survey design, the selection of locations for further

18



Figure 1-3: Screenshot of data communicated to the surface during an autonomous
survey of the environmental impacts of the Deepwater Horizon disaster, integrated
with other sources and overlayed on satellite photographs in Google Earth. White
lines indicate data from the shipboard acoustic doppler current profiler. Vertical
dark blue lines indicate data collected over the preceding days with CTD casts, and
the zigzag located at center indicates mass spectrometer data telemetered acousti-
cally from the AUV in real time.

studywith other instruments, real-time surveymodification, and provided the first

visual confirmation of a coherent subsea oil plume, all while the vehicle was under-

water. This capability remains rare, and this thesis extends it to imagery and high

quality scalar data, while enabling multihop communication for more challenging

environments.

1.3 Motivation for this work

Telemetry from AUVs historically has been limited to a small and predefined set

of vehicle state information, such as the position, interspersed with the occasional

scalar measurement from one or two simple sensors. This level of communication

has proven adequate (if unsatisfying) when the only decision facing an operator is

whether or not to abort themission of a single vehicle. Missions, however, may now

involve multiple vehicles working towards a set of goals, in dangerous and uncon-
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strained environments such as under-ice, operating great distances from surface

ships. There is an increasing need for human operators to have access to the data

gathered by an AUV prior to any planned recovery. Specific benefits include:

New opportunities High-risk exploration missions, like the proposed Nioghalvf-

jerdsfjorden glacier mission, are currently impractical given the value of an

AUV and the likelihood of learning nothing from the mission. Even for more

traditionalmissions, AUV recoveries from the open ocean are challenging and

risky for both vehicles and operators. Returning scientific data prior to the

end of a mission would lower the risk of failure, and thereby enable missions

that are currently impractical or impossible.

Financial incentive Vehicles may take hours to ascend from missions in the deep

sea. The deployment and recovery process for an AUV may take an hour

each. Since a single day of sea time on a fully staffed oceanographic ship can

cost $25 000, and an icebreaker upwards of $100 000 per day, maximizing the

scientific return on eachmission is critical. Observing a subset of the vehicle’s

data prior to recovery could suggest small adjustments to the current mission

with potentially large payoffs, or allow planning to begin for future missions.

Improved autonomy As advanced mission executives, such as MOOS-IvP[9], T-

REX[87], andDAMN[92, 93], enable complex subsea analysis of gathereddata,

communicating that data to the surface becomes (perhaps counter-intuitively)

of greater importance. One two-year study of interactions between human

operators and Zoë, a field robot deployed in the Atacama desert, found that

as the level of vehicle autonomy increased over the years, users needed signif-

icantly more transparency into the robot’s decision-making processes - oper-

ator questions changed from “what happened” to “why is it doing this”[114].

Components of this work offer significant benefit during more traditional AUV

missions as well. The photomosaic of the World War II torpedo bomber shown in

Fig. 1-4, generated by the author, consists of images captured during an AUV dive
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Figure 1-4: Photomosaic of the submerged wreck of an Avenger torpedo bomber,
lost in the Channel Islands National Marine Sanctuary and Park. Raw images cour-
tesy NOAA Northwest Fisheries Science Center.

in the Channel Islands National Marine Sanctuary. This dive was the third attempt

to capture imagery of that site - the first dive was ruined by a faulty strobe, and the

second by a disconnected cable. These types of errors, while avoidable, are difficult

to completely prevent due to the complexity of AUVs. Had previews of the imagery

been available during the mission, it could have been cancelled early rather than

wasting expensive ship time. Relaying this data to the surface requires advances in

the current state of both compression for AUV telemetry, and communication.

1.4 Wireless communication underwater

While typical land or air-based robots might communicate data to human oper-

ators using high-frequency electromagnetic signaling, such as radio modems or

802.11 “WiFi”, electromagnetic radiation is quickly dispersed by water. Table 1.1
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lists the current viable methods for underwater communication. Unfortunately,

the freedom of AUVs to operate without a physical tether comes at a cost. Whereas

tethered vehicles deliver environmental data and imagery to surface operators in

real time, like the JASON II[31] or Nereus[12] Remotely Operated Vehicles (ROVs),

AUV sensor data is typically inaccessible until after the vehicle has been recovered.

Throughput Long Free
(kbps) Range Motion

Acoustic Modem 0.01–0.5 6kmX X
Acoustic Tether 1–15 6kmX ×
Optical Modem 5 000 100m × X
Physical Tether 1 000 000 12kmX ×

Table 1.1: Viable communication options for underwater vehicles.

(a) Acoustic Modem (b) Acoustic Tether

Figure 1-5: (Left) A vehicle equipped with an acoustic modem. Note the omni-
directional beam pattern, allowing communication over great horizontal distances.
(Right) A vehicle equipped with an acoustic tether. Note the narrow beam pattern,
yielding high bandwidth but requiring vertical communication.

While there have been advances in high-bandwidth short-range (< 100m) opti-

cal modems, acoustic communication remains the only viable option for wireless
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underwater communication over multiple kilometers. In addition to wireless com-

munication methods, the recently developed Nereus[12] vehicle at WHOI spools

out tens of kilometers of fine fiber-optic cable, capable of supporting communica-

tion without the weight of a traditional tether. While an exciting development, this

solution still limits the vehicle to operations in the proximity of a ship, and is im-

practical for multiple vehicles. In addition, fiber optic tethers are currently only

usable a single time, and are then discarded into the ocean as trash. Should the

fiber tether be severed, the vehicle must fall back on purely acoustic communica-

tions methods.

Acoustic tethering, a specific method of communicating with an acoustic mo-

dem, relies on transceivers with narrow beams and high bandwidth, where the

surface ship is located directly above the vehicle as shown in Fig. 1-5. This vertical

relationship and focused transducer beam significantly limits the effects of multi-

path interference, drastically improving the quality of the communication link. It

also imposes specific constraints on the geometry of the undersea vehicle and the

surface ship. This is impractical for many autonomous operations, nearly impossi-

ble for those in polar environments, and does not scale easily to multiple vehicles.

This thesis instead assumes the use of a relay chain of AUVs for long range hori-

zontal communication.

1.5 Telemetry Encoding

Long-range horizontal acoustic communications underwater is largely limited to

rates up to hundreds of kilobits per second[108], but low throughput is far from

the only obstacle in underwater communications. The speed of sound in seawa-

ter is approximately 1.5 kilometers per second, which leads to packet latencies of

several seconds. Additionally, while traditional 10/100 Ethernet breaks data into

packets of up to 1500 bytes, acoustic modems may require fragmenting data into

fixed-length packets as small as 32 bytes to facilitate encoding. Transmitting large

chunks of data, such as imagery, requires heavily fragmenting it and reunifying
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these fragments on the surface. Since any single fragment may be lost, the sys-

tem must be resilient to lost fragments or provide a way to request retransmission.

Given the high latencies involved, requesting retransmissions after every packet

results in highly inefficient communication between the recipient and transmitter,

where the majority of both nodes’ time is spent waiting for packets to arrive.

Common terrestrial protocols are poorly suited for underwater use without

adaptation on a number of fronts. The required header for a single User Datagram

Protocol (UDP) packet (the more minimalist of the two transport protocols used

by the majority of internet traffic) would alone consume three-quarters of the stan-

dard 256-bit frame used by default on the WHOI Micro-Modem. Data encoding

is typically performed using the Compact Control Language (CCL), which defines

a set of short messages typically needed by AUV. While there currently exist no

transport or application layer protocols in widespread use for underwater vehicles,

there has been significant research on higher networking layers[19]. NumerousMe-

dia Access Control (MAC) protocols, including MACA[57], MACAW[11] FAMA

derivatives[37, 71] Aloha derivatives[101], and others [116] have been developed to

mediate between multiple communicating nodes. Some protocols provide for sin-

gle transmissions, whereas others allow long periods of time to be reserved by a ve-

hicle for data transmission, amortizing the cost of a traditional CTS/RTS exchange

over a longer transmission[17, 84]. Many recent protocols incorporate knowledge

of vehicle location into the MAC process, to allow estimation of latencies[79] and

tuning of transmission power[136]. Recent research has shown thatmodulating the

power of the transmitter based on the required transmission distance is an efficient

way to minimize the energy spent successfully transmitting each bit across simu-

lated networks. In [77], a decentralized neighbor discovery protocol is presented

that builds on this cross-layer design by reaching out to nearby neighbors before

expending power to communicate more broadly. In practice, most AUVs rely on

some form of time-basedmultiplexing to allow for acoustic navigation and sensing.

Few field experiments have involved multiple AUVs acting as relays.

While there are no known examples of underwater systems for relaying high-
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bandwidth imagery data across multiple AUV hops, there is extensive work in re-

lated areas. A survey of the relevant point to point telemetry research is in Table 1.2.

The papers are grouped into four categories. Papers in this first group are the most

widely used in the field, and consist of simple one-packet messageing systemes.

The second group of papers are those that describe a source coding (compression)

method, optimized in some way for underwater imagery, without describing any

particular communication technique. Each of the methods in this second group

could be used for compression in conjunction with CAPTURE, but is not a teleme-

try solution in and of itself. The third group of papers are those that combine source

and channel coding. These approaches to transmission apply FEC in such a way

that errors result in the image degrading gracefully, rather than preventing decod-

ing of the packet. These methods are the ones used with special purpose modems,

such as acoustic tether systems. They are incompatible with the general-purpose

acoustic modems used by most AUVs. The final group, error-tolerant approaches

to source coding, break data across multiple frames to to increase robustness to lost

packets. The data is restructured such that more important segments of data have

higher amounts of protection than less important segments.

A survey of relevant multihop research follows in Table 1.3. These multi-hop

papers are grouped into three categories. The first category is those systems de-

signed for data collection from static nodes. While these approaches in some of the

same concerns related to MAC as more complicated multi-hop networks, the ve-

hicle is communicating with each node independently in a point-to-point manner

with no routing across multiple hops. The second class of papers are those that are

designed for communicating data fromAUVs, and the third class are those systems

that have been implemented. I have included in this final class two significant field

experiments in Delay-Tolerant Networking, one using buses as the mobile nodes,

and the other using zebras.

The routing method for each of the multi-hop papers is determined to be ei-

ther forwarding-based, or replication-based. Forwarding-based methods rely on

strict transfer of data from one node to another node, along a single route towards
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the receiver. These approaches employ various strategies to ensure the transfer

from node to node, but are fragile to the loss (permanent or temporary) of a single

node. Replication-based methods rely on broadcasting data to multiple receivers,

employing multiple possible paths to to receiver.
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Physical Layer Progressive Source Coding Payload Type Routing
This Work Conventional Modem Yes - SPIHT or Other Progressive Imagery Yes

Scalar Telemetry Systems — No support for data fragmentation

Schneider and Schmidt[98] Conventional Modem No - (D)CCL Single-Packet No
Jakuba[52] Conventional Modem No - (D)CCL Single-Packet No
Webster et al.[127] Conventional Modem No - (D)CCL Single-Packet No
Marques et al.[65], Martins et al.[67] Conventional Modem No - Custom Single-Packet No
Rajala et al.[86] Conventional Modem No - Custom Single-Packet No
Smith et al.[106] Conventional Modem No - Custom Single-Packet No

Suggested Compression Techniques — Unimplemented, but designed for underwater telemetry

Li et al.[61] Simulation Yes - WDR-like Imagery No
Walker et al.[126] Simulation Yes - WDR-like Imagery No
Hoag and Ingle[46], Hoag et al.[47] Simulation No - Wavelet VQ Imagery No

Joint Source / Channel Coding — Single-purpose point-to-point links, may impose specific node geometries

Beaujean and Carlson[8] Short-Range Acoustic
Tether

No - BCH Sonar No

Kristensen and Vestgard[58] 2kbps Acoustic Tether No - Raw Imagery No
Suzuki et al.[115] 16kbps Acoustic Tether No - DCT (256px×240px) Imagery No
Vall et al.[123] OFDM In-Air Acoustic No - MPEG4 / ERT Video No
Iglesias et al.[51] Simulation No - DT Analog Compressed Sensing Imagery No
Zhao and Cheng[134] Simulation Yes - SS-SPIHT Imagery No

Error Tolerant Source Coding — Source coding augmented with unequal FEC to guard against packet loss

Collins et al.[23], Collins and
Atkins[22]

Simulation Yes - SPIHT with EREC Imagery No

Mohr et al.[69], Mohr et al.[70] Simulation Yes - SPIHT with ULP Imagery No

Table 1.2: A Survey of Point to Point AUV Telemetry Systems. While this thesis does support multihop communication, it is included

at the top of the table in gray for comparison. Gray cells in the table represent shared characteristics with this thesis.
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Physical Layer Source Coding Payload Type Routing

Data Collection — Mobile vehicles roaming between static nodes, collecting data

Hollinger et al.[49],Hollinger et al.[48] Simulation N/A Single-Packet None
Dunbabin et al.[27] Short-range optical Custom Single-Packet None

Misc Protocols — Selected protocols for communicating from AUVs

Zorzi et al.[137] Simulation N/A N/A Forwarding
Jones et al.[54] Simulation N/A N/A Replication
Nimbalkar and Pompili[76] Simulation N/A N/A Replication
Talavage et al.[117] Simulation N/A N/A Forwarding
Toni et al.[122] Simulation Progressive + UEP Imagery Forwarding

Implemented — Systems which have been used in the field

This Work Conventional Modem Progressive Imagery Replication
Xie and Gibson[130], Rice et al.[91],
Rice and Green[88], Rice and Ong[89]

Conventional Modem Varied Varied Forwarding

Goel et al.[43], Haag et al.[45], Benton
et al.[10], Duarte et al.[26]

Conventional Modem Unknown Single-Packet Replication

Balasubramanian et al.[6] RF on 40 Buses None Random Data Replication
Juang et al.[55] RF on Wild Zebras Unknown Timeseries of Po-

sitions
Replication

Table 1.3: A Survey of Multihop AUV Telemetry Systems. This thesis is included in gray for comparison. Gray cells in the table

represent shared characteristics with this thesis.
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I highlight four different aspects of the papers. First, I identify the physical layer

described in the paper. Most experiments have been performed as software sim-

ulations, but several have been implemented for use with either high-bandwidth

acoustic tether systems, or on conventional, broadcast acoustic modems. Of the

cited papers that are designed for conventional acoustic modems, only one set has

exhibited the capability to communicate imagery or other data more complex than

basic vehicle health. Those papers describe the set of experiments performed by

Benthos and the Navy Postgraduate School as part of the U.S. Navy’s SeaWEB[90]

program. In contrast with my work, which relies entirely on networks of free-

swimmingAUVs, SeaWEB relies on a dense cellular network ofmany fixed seafloor

nodes. Vehicles in the area of the network communicated with the nearest fixed

node, which then relays data back to land via a fixed routing table. Data is re-

layed from fixed node to fixed node, with each attempting to immediately forward

acquired data in the manner of a traditional terrestrial network. Should a node

become disabled after accepting a transfer, there are no end-to-end guarantees or

ways of working around the lost data.

When an end-to-end path is not immediately available, and nodes are moving

relative to each other, replication of data rather than handing it off has several bene-

fits, as described in greater detail in Chapter 2. This strategy, known as replication

routing or store and forward routing, is used in this thesis, as well as in a set of

papers describing work on the Solar AUV at AUSI. In that work, a vehicle mov-

ing between two portions of a partitioned network stored transmissions until they

could be delivered to the second portion of the network. These transmissions were

standalone messages containing vehicle states, which could be stored without any

need for ordering or fragmentation.

1.6 Organization of this thesis

This thesis beginswith analysis of the need for, and characteristics of, delay-tolerant

underwater multi-hop relay networks (Chapter 2). It then continues through a dis-
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cussion of data compression techniques for AUVs, including novel approaches to

scalar telemetry and image compression (Chapter 3). These contributions com-

prise key components of CAPTURE, my proposed architecture for AUV telemetry

compatible withmultiple contemporary AUVs. Chapter 4 lays out the overall CAP-

TURE architecture, and describes the integration of CAPTURE into existing vehicle

platforms. Field results from three separate trials are presented in Chapter 5. Fi-

nally, Chapter 6 wraps up by discussing limitations, future work and conclusions.
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CHAPTER 2

Multi-Hop Relay Communication

As described in Chapter 1, underwater communication over long horizontal dis-

tance currently requires the use of acoustic modems. In this chapter, I provide

an analysis of the benefits of using multiple AUV ‘hops’ to relay vehicle telemetry

over long horizontal distances. Specifically, these benefits include increased com-

munication efficiency and decreased power usage. I then analyze the challenges

presented by communicating across such a sequence of relays, including high la-

tencies, the lack of an instantaneous end-to-end path, and mobility of nodes. Fi-

nally, I propose an approach to relay communication tuned to the challenges and

strengths of these AUV relay chains, including the presence of storage onboard the

vehicle, and the necessarily small number of nodes.

2.1 Small, Multi-hop Relay Links

The ocean imposes severe limitations on acoustic communication, including low

available bandwidth and long propagation delays[1, 5, 108], which lead to frequent

data corruption and high latencies. These communication challenges are made

worse by operating over large distances, by heavy ship traffic in the area, by strong

winds and by the presence of multi-path interference. Despite these challenges,

robust physical communication layers exist off-the-shelf in the form of acoustic

modems from manufacturers including Linkquest, Sonardyne, Teledyne Benthos,

and WHOI. To correct for bit errors during transmission, while minimizing power

usage, acoustic modems typically offer a discrete set of pre-programmed Forward

Error Correction (FEC) levels[85]. Users typically provide a short and fixed-length
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payload to the modem, which applies FEC and includes a checksum for verifica-

tion on the receiving end. This data, now with added redundancy, is modulated

and transmitted via a transducer into the water. In the case of general purpose

modems, FEC is applied uniformly to the transmitted message, without regard for

the importance of individual bits.

For a fixed power and transmission bandwidth, the level of FEC applied prior

to transmission determines the balance between throughput and reliability. When

the data is received, it is demodulated and equalized before the modem attempts

to decode the data. If the data has been heavily corrupted, the errors will not be

entirely correctable and the checksum will not match. In this case, most acous-

tic modems simply discard the received data. As a result, commercially available

acoustic modems present a Binary Erasure Channel (BEC) to users – packets are

either successfully received, or lost. If the level of FEC is insufficient for the current

channel then communication may be extremely intermittent, with long periods of

no connectivity. The percentage of these transmissions which are unsuccessful is

the Frame Error Rate (FER). The WHOI Micro-Modem[36], as one example, can

encode its data using spreading or block codes with varying levels of redundancy.

As a result, transmitted packets may range from 32 bytes to 2048 bytes.

Figure 2-1 illustrates the tradeoff between rate and reliability obtained at three

levels of FEC with data acquired during a typical AUV mission near Guam. The

missionwas performedby theAUVLucille. Lucille, a SeaBED-class[104]AUVoper-

ated by theNOAANorthwest Fisheries Science Center, was equippedwith aWHOI

Micro-Modem[36] and a 12.5 kHz ITC-3013 hemispherical transducer for acoustic

communications. Messages sent using the 80bps encoding and Frequency Hop-

ping Frequency Shift Keying (FH-FSK) modulation, in red, were received consis-

tently throughout the dive. Messages sentwith the lowest level of FEC andQuadra-

ture Phase Shift Keying (QPSK) modulation, in blue, were received inconsistently

but delivered a significantly higher instantaneous throughput. The intermediate

encoding with QPSK modulation, in green, performed between the two extremes.

These statistics are typical of those realized in practice - achieved throughputs from
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Figure 2-1: At top, the percentage of messages received in each eight-minute time
period. At bottom, the instantaneous throughput in bits per second based on those
percentages. Both plots have been filtered with a 5-point moving average to reduce
jitter.

free-swimming AUV are commonly as low as tens or hundreds of bits per second,

with long periods of disruption.

2.1.1 Frame Error Rate (FER)

Whether or not a frame is successfully received depends on the number of bits

corrupted during transmission being fewer than the number that the FEC is able

to correct. The number of bit errors is governed directly by the Signal to Noise

Ratio (SNR) of the signal at the receiver. The number of frames that successfully

get through, then, is also a function of the SNR. Fig. 2-2 shows the actual FER ver-

sus SNR during a 2010 mission of the Lucille AUV. In September of 2010 Lucille

assisted in mapping the submerged portion of the San Andreas Fault off North-

ern California, at approximately 39◦50′N, 124◦W. During this survey, the AUV’s

onboard networking stack transmitted once every five seconds using QPSK and al-

ternating levels of FEC. A particularly interesting case study of frame error rates in

the vertical channel is provided by Singh et al.[105], which analyzes data obtained

during a full-ocean depth experiment in the Mariana Trench.
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Figure 2-2: Mean Frame Error Rate versus measured SNR of detected packets dur-
ing the Pacific Storm 2010 field experiment. The solid line is aWiener-filtered ’best-
fit’ line to the points for each level of FEC. For very low SNR values, it is likely that
many packets are simply not being detected. The packets were transmitted using 4
kHz bandwidth around a center frequency of 10 kHz.

2.1.2 Receiver SNR modelling

For a narrowband signal, the SNR is the ratio of the received signal strength to

the strength of the ambient noise, as shown in (2.1), where the received signal

strength is the transmission powermultiplied by some attenuation due to transmis-

sion losses. Here P is the initial transmission power, A is the attenuation through

the water column, N is noise level, and d and f are distance and frequency.

SNR(d, f) ∝ P

A(d, f)N(f)
(2.1)

Attenuation

Following closely the derivation by Stojanović in [109], the attenuation of a narrow-

band acoustic signal underwater comes from absorption by water and spreading

losses, as in (2.2).
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A(d, f) ∝ dk · a(f)d (2.2)

The spreading losses are independent of frequency, and represented by dk, where

d is the propagation distance and k describes the propagation geometry as spher-

ical (2.0), or ‘practical’ (1.5). The absorption coefficient, a(f), is dependent on the

frequency. For an unobstructed path, the coefficient can be modeled using Thorp’s

formula[119, 13] as expressed in (2.3), where frequency (f) is in kiloHertz and a(f)

is in decibels per kilometer:

10 log a(f) =0.11
f 2

1 + f 2
+ 44

f 2

4100 + f 2
+ 2.75 · 10−4f 2 + 0.003 (2.3)

a(f) ≈0.06f 1.35 (2.4)

Across the frequencies 100Hz-100kHz, which includes those used in long-range
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Figure 2-3: Absorption Coefficient [dB/km] versus Frequency [kHz]. The solid line
presents the absorption coefficient for a range of frequencies as modeled by Thorp
while the dotted line presents a numerically simpler approximation, 0.06f 1.35. Both
approximations produce similar values for the absorption coefficient across 100Hz
to 100kHz.

underwater acoustic communication, I have found that the absorption coefficient

can be modeled by a(f) ≈ 0.06 · f 1.35, where f is the frequency in kiloHertz, as
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shown in Fig. 2-3.

Noise

Noise in the ocean comes from four primary sources: turbulence, shipping, waves,

and thermal agitation[20]. Each of these can be reasonably modeled with the ap-

proximations in Eqs. 2.5–2.8, where s represents the level of shipping traffic (0.0-1.0)

and w is the wind speed in meters per second.

10 logNturb(f) =17− 30 log f (2.5)

10 logNship(f) =40 + 20(s− 0.5) + 26 log f − 60 log(f + 0.03) (2.6)

10 logNwind(f) =50 + 7.5
√
w + 20 log f − 40 log(f + 0.4) (2.7)

10 logNtherm(f) =− 15 + 20 log f (2.8)

N(f) =Nturb +Nship +Nwind +Nthermal (2.9)

N(f) ≈50− 15 log f (2.10)

Across the frequency range used by acoustic communication systems, the primary

variable source of noise is the surface motion of waves, driven by wind. Fig. 2-4

illustrates the total value of the noise for three different levels of wind and shipping

(Eq. 2.9), along with the noise approximation of 50 − 15 log(f) (Eq. 2.10) used by

Stojanovic[109] and in this thesis.

AN Product

If we assume a transmitter with fixed power and recall Eq. 2.1, the variable and

frequency-dependent component of the receiver SNR is simply 1
A(d,f)N(f)

. If we plot

this quantity versus frequency for several values of distance (d), as in Fig. 2-5, clear

maxima are visible. For any given distance, there is therefore a frequency which

maximizes the SNR, based upon the attenuation and noise. Using the approxima-

tions from Eq. 2.10 and 2.4, we can solve for the closed-form solution shown in

2.16. This solution provides a close approximation to the AN product for frequen-
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Figure 2-4: Noise Level vs. Frequency. Solid lines are used to display the noise level
of three different levels of surface waves as presented in [20]: 1) no wind, no ship-
ping; 2) light breeze, minimal shipping, and 3) moderate breeze, heavy shipping.
The dotted line represents the value of 50− 15 log(f), used as an approximation.

cies between 100Hz and 100kHz, where d is the distance in kilometers and f the

frequency in kilohertz.

0 =
∂

∂f
[−10 logA(d, f)− 10 logN(f)] (2.11)

0 =
∂

∂f
[−(k · 10 log d+ d · 10 log a(f))− (50− 15 log f)] from (2.5) (2.12)

0 =
∂

∂f

[
−(k · 10 log d+ d · 0.06f 1.35)− (50− 15 log f)

]
from (2.4) (2.13)

0 =
∂

∂f

[
−d · 0.06f 1.35 + 15 log f

]
(2.14)

df 1.35 =
185.19

ln 10
(2.15)

f =

(
80.425

d

)0.741

(2.16)

The WHOI Micro-Modem operates around a center frequency of 10, 15, or 25

kHz. Most other commercially available modems operate at similar center fre-
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Figure 2-5: This figure depicts 1
A(d,f)N(f)

for several values of d, the distance. This
represents the frequency-dependent component of the Signal to Noise ratio (SNR)
at the receiver. Maxima are clearly visible for each range, indicating the optimal
frequency (in terms of noise and attenuation) for transmission at that range [109].

quencies. As shown in Fig. 2-6, these commercially-available modems are de-

signed to perform optimally at distances between 1 and 5 km. If we invert the

plot shown in Fig. 2-5 to generate Fig. 2-7, we can observe the performance of

each frequency across a range of distances. While a 25kHz modem operates well

over short (<1km) distances, the performance rapidly falls off as distance increases.

While 3kHzmodems have been used for long-distance underwater communication

in the past, they are attenuated much more at short ranges. 10kHz modems there-

fore represent a good compromise for high performance over both short and long

distances. For this reason, 10kHz is the frequency used by most long-range AUVs

for communication.
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Figure 2-6: Optimal frequency vs. distance as calculated by the approximation in
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(
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)0.741. Typical frequencies for AUV communication are indicated,
along with the 3kHz band that offers benefits for long-range single-hop communi-
cation.

2.1.3 Motivation for a small multi-hop AUV network

Every non-decodable transmitted packet wastes, minimally, the power required to

transmit it, the time to transmit it, and the power required to attempt decoding it.

In addition, some form of feedback from receiver to transmitter may also be re-

quired to convey the mis-communication. As shown previously, the FER is closely

related to the SNR at the receiver, which is governed by the distance between nodes,

the operating frequency, and the transmission power. In particular, to achieve some

FER, Pfe, there exists someminimum SNR so that the achieved FER is less than Pfe.

The particular relationship between SNR and FER depends on the level and type

of FEC applied, and the modulation scheme. Fig. 2-8 indicates this relationship

for the five QPSK-modulated FEC levels supported by the WHOI Micro-Modem,

computed assuming no Inter-Symbol Interference (ISI) and Additive White Gaus-

sian Noise (AWGN).

To ensure transmission across a given distance, the power of the transmitter

could simply be increased. This strategy does not by itself, however, provide a

workable solution to communicating data from AUVs over a long distance for two

reasons. First, AUVs have a limited supply of power available, relying on large
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Figure 2-7: Frequency-dependent component of SNR vs. Distance for three mo-
dem frequencies. SNR is on the vertical axis, with higher SNR indicating a greater
likelihood of reception. The horizontal axis displays transmission distance. Out
to about a kilometer and a half, a 25kHz modem is the most efficient. Long-range
performance is, however, quite poor. 10kHz performs the best all theway out to ap-
proximately 10km. 3kHz links have significantly poorer performance, nearly 10dB,
over both short and medium ranges. A 10 kHz center frequency reflects a reason-
able compromise between short and long-range performance.

battery packs to sustain them until recovery. Second, many acoustic modems have

a fixed transmission power, which cannot be controlled underwater. In [109], the

power required to achieve a fixed SNR is shown to have an exponential relation-

ship with distance (Eq. 2.17). Similarly, for a given SNR, a channel has a certain

theoretical maximum capacity. The closed-form functions below are derived for

these relationships, where c, p, γ, and ψ, are constants derived from modeling in

the same paper[109] and dependent upon the desired SNR.

C(d) =cd−γ (2.17)

P (d) =pdψ (2.18)

In [110], the case is made that using multiple relay ‘hops’ to communicate data al-

lows for more efficient power usage. I trace that argument here, and point out that
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Figure 2-8: Frame Error Rate (FER) for the WHOI MicroModem versus receiver
SNR, derived from simulation. Additive White Gaussian Noise (AWGN) and the
absence of Inter-Symbol Interference (ISI) are assumed. Simulation results pro-
vided by Sandipa Singh, Acoustic Communications Laboratory, WHOI.

in the case of AUVs the number of relays will necessarily be small. In particular,

small multi-hop relay chains of AUVs offer an appropriate solution for communi-

cation over many tens of kilometers.

In order to to transmit data as efficiently as possible, we seek to transmit mes-

sages using the minimum amount of power, while still ensuring the message is

successfully received. In other words, we want to minimize the ratio of power (P )

to capacity (C). Considering the case for not only a single hop but for multiple

hops, the total power used by the relay network would be n · P (d/n), where n is

the number of hops and d is the link distance. The capacity across each hop, and

therefore across the entire sequence of hops, would be C(d/n). A plot of energy

(E) per bit En(d) = n·P (d/n)
C(d/n)

can then be derived for a given SNR. Fig. 2-9 shows the

energy per bit for a target SNR of 20dB.

While transmission efficiency is greaterwith a larger number of hops, this analy-

sis assumes that there is no cost associatedwith adding a single hop. By combining

the transmission cost,Eb, with a fixed per-node cost, an expression for the optimum

number of relay hops for a given communication distance can be obtained. In [110],
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Figure 2-9: Energy per bit versus the number of hops, from [109]. The energy per bit
required can be reduced by transmitting across shorter distances, or by increasing
the number of hops present in the network.

an empirically determined per-hop cost of 120dB is used. Using this analysis, the

optimal number of hops is found to be fewer than nine for ranges out to 50 kilome-

ters. It is reasonable to expect that the per-hop cost is linear and relatively low for

pre-existing, fixed seafloor nodes.

AUVs serving as hops, however, come with significant costs in practice. Each

additional hop requires the purchase and deployment of another vehicle, a more

complicated task for vehicles than for simple seafloor nodes. Increasing the per-

hop cost by 6dB significantly decreases the determined number of optimal hops

over longer ranges, as in Fig. 2-10a. If the vehicles must travel from the network

endpoint to their relay location, as when deploying through ice, the additional en-

ergy for this deployment process may be significant and should be included in the

cost function. For the case of a linear sequence of relays, that will be the inter-hop

distance distance
nodes−1 multiplied by the number of hops each vehicle must travel, times

some transit cost. Fig. 2-10b shows that incorporating such a cost also has the effect
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Figure 2-10: The optimal number of hops for communicating over five different
ranges. The gray lines in both figures represent the optimal number as calculated
in [110]. The top figure shows the effect of increasing the (empirical) per-node fixed
cost by 6dB. The bottomfigure indicates the result of introducing a deployment cost
based on the distance travelled by each node.
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of skewing the cost function towards a lower number of optimal hops. Adding a

second, third, or fourth AUV to the water also increases the complexity of an expe-

dition significantly, increasing the risk of losing any single vehicle. Even without

establishing the actual value of the per-node cost, it becomes clear that operating

in hazardous environments with significant external per-node costs will result in

a lower theoretic optimum for the relay network size. While Stojanovic shows that

nine hops is optimal for a link distance of nearly 50 kilometers[110], these results

with alternative cost functions indicate that communication over distances of up

to 80 kilometers may be optimally performed in less than nine hops. This formu-

lation assumes that no power is spent to receive data, only to transmit. Zorzi et

al[137] show that in the specific case of the WHOI Micro-Modem, the energy used

when receiving packets becomes a dominant factor in total energy consumption af-

ter only a few hops. To communicate over 50 kilometers, their results suggest that

only four nodes is optimal.

2.2 Relaying with CAPTURE

Endpoint

(Ship)

Origin

AUV

Relay

AUV

Relay

AUV

Hop HopHop(s)

Figure 2-11: A three-hop network, labeled with the names used in this thesis.

The goal of a multi-hop relay system is to transmit data from the origin to the

endpoint, across one or more ‘hops’, as in Fig. 2-11. As even compressed imagery

data will easily dwarf the maximum transmission size of most acoustic modems,

the data must be fragmented into pieces, or “segments”, prior to being relayed

across the multi-hop chain. It is tempting to consider this relaying as a simple ex-

tension of the single-hop case; each segment needs to be communicated to the next

node in the relay chain, which is then responsible for delivering the segment further

down the chain. While this approach has been used successfully by SeaWEB[90]
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and in other networking systems, it suffers from drawbacks which we now discuss

in turn.

First, the ocean is shared by all communicating nodes. Although individual

vehicles may be unable to receive specific messages, underwater acoustic commu-

nication is broadcast in nature – transmitted messages will be heard by all vehicles

within transmission range. This can be exploited to improve the throughput of the

relay – if the origin’s message is heard by the endpoint, there is no need for a relay

AUV to repeat the message.

Second, if a relay AUV leaves the network, it will not be possible to forward any

segments which have been successfully delivered to that vehicle but not forwarded

beyond it until that vehicle re-enters the network. This is particularly unfortunate

given the ever-changing underwater environment, which can frequently cause such

disruptions.

Third, simple relay communication systems do not take advantage of the spe-

cific capabilities of AUVs. Unlike a seafloor node on a long-term deployment, AUV

are equipped with large capacity batteries, the capability for significant computa-

tion, and large amounts of data storage. This chapter therefore proposes a relay

approach better suited to the unique capabilities and limitations of AUVs. The

specific characteristics of this approach are now discussed in turn.

2.2.1 Store and Forward

Terrestrial networking commonly relies on the capability to rapidly forward seg-

ments from one network node to another node, dropping those segments which

cannot be immediately forwarded due to a bad link. If the segments are important,

they must be retransmitted by the origin again. This is impractical in an underwa-

ter relay link, given the high probability of at least one hop failing. Early research

into Disruption-Tolerant Networking[34] suggests that employing a “store and for-

ward” approach, where relays store data until passing it off to another relay, can sig-

nificantly improve the performance of high latency and intermittently-connected

networks. An implementation of this strategy, the Bundle Protocol, is now being
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pursued under the auspices of the Internet Society’s Delay TolerantNetworking Re-

search Group (DTNRG)[102]. In that work, responsibility for eventual data trans-

mission can be conveyed from one node to another node, which is then obligated

to deliver the data at all costs. The original node can then delete the stored data to

free up storage.

While storage is a relevant concern on space vehicles, whichmay be deployed in-

definitely, it is less of a concern for underwater vehicles. Relative to the bandwidth

available with modern acoustic modems, AUVs can be considered to have nearly

infinite storage. Ten AUVs communicating constantly at a generous throughput of

10kbps for one month would have exchanged only about thirty gigabytes, easily

capable of fitting on a small and cheap flash drive. CAPTURE nodes exploit this

capability mismatch by having every node in the network permanently store each

piece of data that it overhears, regardless of the transmitter.

2.2.2 Broadcast Medium

In most networks, including the space networks targeted by the DTNRG, transmis-

sions are relayed from a single network node to another single node. Underwater,

all transmissions are broadcast in nature. Rather than focusing on relaying a spe-

cific segment of data from the first hop to the second hop, CAPTURE nodes track

which segments are known to be possessed by any vehicle closer to the endpoint.

Segments which are not known to be possessed by downstream vehicles are then

transmitted. CAPTURE encodes enough metadata to uniquely identify every seg-

ment of data that it transmits. This allows any receiver to fully decode any received

segment of data, regardless of whether it has previously received any information

about the resource it belongs to. If a receiver is downstream from the intended

recipient, it may be unnecessary for the intended recipient to ever transmit that

segment.
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2.2.3 Selective Acknowledgement

While the use of multiple relay vehicles increases the overall efficiency of an acous-

tic link, it also introduces additional challenges. Even the simple three-hop network

shown in Fig. 2-11, if spread across twenty kilometers, would have an end-to-end

latency from the origin to the endpoint of tens of seconds. Since vehicles move rel-

ative to each other, there may be long periods without an end-to-end path through

the network. Were the origin to wait for confirmation that the endpoint had re-

ceived a data segment before moving onto a new piece of data, end-to-end trans-

mission would slow to a crawl. Even waiting for acknowledgement of reception

from the next node in the chain halves throughput, since each transmission must

take twice as long for the round-trip acknowledgement.

Selective acknowledgement is a well established technique, and has even been

added to mainstream protocols like Transmission Control Protocol (TCP). Instead

of transmitting an acknowledgement after every received segment of data, a single

acknowledgement is sent at some future time that allows the transmitter to identify

which segments were successfully received and which were not. Drawing inspira-

tion from peer-to-peer file sharing services and the work of Wiemann et al.[128],

CAPTURE nodes acknowledge not only the segments that they possess but also a

list of all the segments other nodes report to have possessed, by node. This epi-

demic routing of the segment masks would not be practical for large numbers of

nodes, but is possible for these small relay networks. Keeping track of which seg-

ments have been received locally, andwhich are known to be possessed by a down-

stream node, also aids in prioritizing segments for transmission. If a downstream

node is disabled before successfully passing on segments it possesses, other nodes

can easily identify which pieces remain to be relayed and fill them in. This stands

in contrast to networks that hand off delivery responsibility.
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2.2.4 Routing and disruption tolerance

While this thesis primarily provides an approach to returning data from a single

vehicle by way of multiple relay ‘hops’, it is desirable that the identity of the origin

vehicle be able to change over the course of a dive. In addition, relay vehicles may

become disabled and unable to perform their duties. It is important, therefore,

that there exists a method for specifying which vehicle is the origin, and what the

sequence of vehicle ‘hops’ is that will convey data to the surface endpoint.

In large networks, routing tables typically proscribe the ideal path through a

network from one node to any other node. In the case of a large mobile network,

determining these tables presents a significant challenge. Ad-hoc routing meth-

ods designed for routing in networks of unknown connectivity such as AODV[81]

would seem an ideal fit, yet high latencies make on-demand route discovery chal-

lenging. In an underwater network of AUVs, surface operators frequently have

out-of-band information, such as vehicle locations and future mission plans, that

may inform selection of an appropriate route. Rather than nodes attempting to

learn routing information independently, I propose that surface operators are best

equipped to identify which vehicle should transmit as the ‘origin’, and which vehi-

cles are most appropriate to aid in relay communication. For networks of less than

eight vehicles, including this data in each packet consumes a very small number of

bits. CAPTURE therefore includes such information in every acknowledgement.

2.3 Comparison of Performance

To illustrate the benefits of an architecture like CAPTUREwhich incorporates these

techniques, a set of network simulations were run. Three protocols were imple-

mented in Python, and simulated under a variety of conditions. The first protocol

is a basic node-wise acknowledgement protocol, which requires each segment to

be successfully received by the next node before accepting an additional segment.

This protocol would clearly be expected to perform poorly, though it has the ben-
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Figure 2-12: Frame Error Rate (FER) versus distance used in the simulations below.

efits of: being similar to that which is currently done in practice, being simple to

implement, and using no portion of the transmissions for metadata.

The second protocol implements selective acknowledgement without the ad-

ditional improvements incorporated into CAPTURE. After transmitting six data

segments, the relay nodes would transmit a segment mask of all the segments they

had received. The origin and endpoint transmitted only chunks and segment lists,

respectively.
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Figure 2-13: CAPTURE’s performance versus simpler protocols. Note that the Y
axis indicates contiguous bytes received, starting with the first.

For the purposes of the simulation, a fixed frame size of 64 bytes per transmis-
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sionwas used, alongwith the FER probabilities shown in 2-12. The simulated relay

link consisted of four vehicles spaced two kilometers apart over six kilometers was

simulated, with a fixed TDM cycle. The TDM cycle provided for the origin and two

hops to each transmit three times for each single cycle of the endpoint. Since the

endpoint has no data to transmit, it need not communicate as frequently. A single

cycle of the CAPTURE and selective acknowledgement protocols was assumed to

consume 5 seconds, whereas a single cycle of the node-wise acknowledgement pro-

tocol was assumed to take 8 seconds to account for a required immediate return ac-

knowledgement. Ten hours of transmission were simulated, with the middle three

hours shown in Fig. 2-13. After successfully transmitting aminimum of 1600 bytes,

each node began transmitting a new artificial data source. For the simulation run

illustrated, the number of preview images successfully received within ten hours

is shown in Table 2.1.

Protocol Previews Received
Node-wise Acknowledgement 8
Selective Acknowledgement 28

CAPTURE 40

Table 2.1: Number of preview-sized ‘images’ received over the course of a 10 hour
simulation, consisting of a three-hop (four vehicle) network.

The simplest protocol, node-wise acknowledgement, performed quite poorly as

expected. Both CAPTURE and the selective acknowledgement protocol show sig-

nificant non-linearities in the progress of each image preview – these nonlinearities

occur when a missing segment is received that connects a large number of received

segments to the first segments. The performance of the network is closely tied to

the FER for each hop in the network, which is closely tied to the length of the hop.

Fig. 2-15 shows the results of running the same simulation several times for a sim-

pler two-hop network. The x-axis is the distance between the origin and relay in

the relay chain, and the y-axis represents the distance between the relay and the

endpoint.
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Figure 2-14: Results of simulated transmission across two hops using CAPTURE,
by distance. The color represents the number of 1600 byte preview images received
during a simulation of a twelve-hour mission.
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(a) 2 hops, repeating until acknowledged
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(b) 2 hops using selective acknowledgement
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Figure 2-15: Results of simulated transmission across two hops, comparing CAP-
TURE and simpler protocols. After simulated transmission for twelve hours, the
number of successfully received 1600 byte image thumbnails was compared be-
tween the two approaches. At bottom, the ratio of CAPTURE’s performance to that
of the simpler protocols are shown on a logarithmic scale. For very low proba-
bilities of frame error (< 5%, the low overhead of the selective acknowledgement
protocol allows it to outperform CAPTURE by nearly 10%. Otherwise, CAPTURE
significantly outperforms both alternatives.
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2.4 Humans in the loop

While it is mathematically satisfying to consider metrics such as channel capacity

and throughput, they do not fully capture the utility of the data transmitted to the

surface. What is transmitted is just as important as how effectively it is transmitted.

Autonomous robots are used in both exploration and emergency response. While

it’s no doubt possible to codify into an algorithm the appropriate search method

for a submerged oil plume, there simply is not time to prepare such complicated

behaviors in the wake of disasters like the Deepwater Horizon spill. Involving hu-

man operators in the selection and prioritization of telemetry increases the overall

value of the telemetry just as much as increasing the throughput. In the next chap-

ter, I present compression methods that both encode data efficiently to make use

of the limited throughput, and increase the overall efficiency of AUV telemetry by

incorporating user feedback.
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CHAPTER 3

Data Coding

This chapter outlines two key characteristics of the telemetry compression algo-

rithms used byCAPTURE—efficient bandwidth usage and progressive encoding—

anddiscusses their importance to operating in underwater environments. Methods

for compressing typical AUV data subject to those constraints are then presented.

Results of applying these methods to both imagery and scalar environmental data

are compared against current approaches using data collected during AUV mis-

sions. I propose a new technique for compression whereby wavelet coefficients are

pre-scaled with a weighting function, prior to quantization. This enables trans-

mission of greater detail in the most important areas of a signal while minimizing

the number of bits used elsewhere in that signal. Wavelet compressors are highly

efficient at encoding intra-image redundancy, having amongst the highest known

compression ratios on single images. For images which we have prior information

about, or sequences of repetitive imagery, it seems beneficial to seek an algorithm

that makes use of significant inter-image redundancy as well. I present such an

algorithm, which relies on texture segmentation, classification, and synthesis for

image compression. We start with a brief review of the current state of the art.

3.1 Background

AUVmissions primarily call for collecting two forms of data: readings from scalar

environmental sensors, and sonar or optical imagery. Over the course of a dive, an

AUV could easily collect one million samples of scalar environmental data, such

as water temperatures or methane concentrations[16]. In addition to that data,
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SeaBED AUVs capture color photographs every 3 seconds at 1360 × 1024 resolu-

tion, and 36 bits per pixel, from each of up to four cameras – tens of thousands of

image per dive. Transmitting a single one of these images would take nearly two

days at a sustained (and optimistic) rate of 300 bits per second. Getting every bit of

the collected data to the surface during a mission is currently impossible.

3.1.1 Scalar Environmental Data
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Figure 3-1: Sample scalar environmental data. Temperature datawas collected over
an archaeological site near Santa Barbara, California using a SeaBED AUV The re-
duction potential data was collected as part of the Arctic Gakkel Vent Expedition
[60], and provided by Dr. Koichi Nakamura.

Modern AUVs commonly transmit a predefined set of state data to the surface,

such as the vehicle position, depth, battery life, heading and similar status infor-

mation. Some augment these transmissions with a small number of environmental

data samples, though most environmental data is trapped on the vehicle until after

recovery. Fig. 3-1 shows typical Temperature and Reduction Potential (Eh) data ac-

quired during two SeaBED AUV dives. While temperature varies throughout the

mission, Eh remains relatively constant except for brief periods of activity.
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The diversity of AUV missions has led to a variety of custom approaches to en-

coding and decoding these vehicle status messages. Many of these solutions are

based on the CCL[111] standard for acoustic communication, which provides a

number of standard algorithms for encoding 256-bit messages containing depth,

latitude, bathymetry, altitude, salinity, and other data. The messages are designed

to communicate only current information about the vehicle. If the communication

link is temporarily not functioning, no data about the vehicle state during that time

would later be communicated to the surface. CCL also relies upon quantization

alone to provide compression, for instance, using only 256 discrete values to head-

ing with an encoded precision of 1.4 degrees. While this reduces the number of

bytes used, it makes no use of the inherent correlation between successive head-

ing, temperature, or salinity measurements in oversampled data. Recognizing that

many of the measurements are oversampled, Eastwood et al. proposed predic-

tive coding methods that improved the performance of CCL[28]. Schneider and

Schmidt incorporate predictive coding into their recent work with Dynamic Com-

pact Control Language (DCCL)[99], sending up a mean value followed by smaller,

quantized, difference values. For time-series data with significant redundancy,

such as oversampled time-series data, transform compression allows much higher

efficiency.

Transform compression methods typically follow a standard pattern. First, a

source coder such as the Discrete Cosine Transform (DCT) or Discrete Wavelet

Transform (DWT) exploits the inherent correlation within most data, and concen-

trates the energy of the signal into a sparse set of coefficients. Effective source en-

coders concentrate most of the energy of the original signal into a smaller number

of coefficients. These coefficients will no longer be correlated across different input

sequences, as they can otherwise be compressed further [96]. Next, this smaller

set of significant coefficients is encoded in a way that allows reconstruction of an

approximation to those coefficients[94]. The process is simply reversed to decode

an approximation to the original data. Interestingly, many transform compression

methods can be used for both one and two dimensional data, simply by using the
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appropriate form of the source coder.

3.1.2 Imagery

There has been significant development ofmethods for the transmission of still[115]

and video[80] imagery over relatively high bandwidth (∼1-10kbps) acoustic teth-
ers operating vertically. Early efforts employed the widely used JPEG image com-

pression standard. JPEG performs transform compression using the DCT, and a

fixed quantization table for a pre-chosen quality. Craig Sayers, and others at the

University of Pennsylvania, developed techniques for selecting specific frames and

‘regions of interest’ from a video sequence that best describe an ROV manipulator

and environment state, and transmitted these regions to surface operators over a 10

kbps acoustic tether as JPEG images[97]. There are fewer examples of free-ranging

AUVs telemetering imagery. In one SeaWEB[90] experiment, fixed seafloor nodes

were used to relay a small number of images. Unfortunately, JPEG performs quite

poorly at the high compression ratios needed for acoustic telemetry. Eastwood et al.

evaluated the performance of an early wavelet-based compressor, EPIC, and found

that it had benefits at low bitrates relative to JPEG[28]. In addition, there has been

some previous study indicating wavelet compression techniques are particularly

applicable to underwater images, video, and acoustic imagery[44, 46, 47].

Figure 3-2: The spectrum of compression options for imagery, as developed in this
thesis. Note that the options span many orders of magnitude.

To compress imagery to a size appropriate for acoustic transmission, a few hun-

dred to few thousand bytes, requires very high compression ratios. While a typical

compression ratio for a JPEG intended for human-viewing might be 10:1 or 30:1,

converting a one megapixel color image to a few kilobytes implies a compression

ratio of 1000:1 to 3000:1 – two orders of magnitude higher. This necessitates the
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analysis and use of less common compression techniques. In this chapter, I present

a range of options for communicating imagery, ranging from summarizing an en-

tire dataset as a time series to encoding individual images using wavelet compres-

sion, as shown in Fig. 3-2. I also present a novel method for image compression

based on texture synthesis and texture classification. This method, nicknamed Im-

age Synthesis, fits between transmission of individual images and summarydataset

statistics.

3.1.3 Discrete Wavelet Transform (DWT)

Transform compression using the DWT as a source coder, typically referred to as

wavelet compression, has been found effective on a variety of real-world signals and

imagery[14]. The DWT, a linear transform, is nowwidely used as a source encoder

for imagery and biomedical data. The DWT is calculated by applying a low-pass

filter to the input signal, generating one set of coefficients, and then applying a high-

pass filter to the input signal to generate a second set of coefficients. Both sets of

coefficients are downsampled by two, resulting in the same number of coefficients

as the original input signal had samples. Calculating the DWT of a signal thus

results in two distinct sets of coefficients; a decimated version of the signal known

as the ‘approximation coefficients’, and a set of ‘detail coefficients’ which contain

the higher-frequency information lost during decimation. Fig. 3-3 shows the full

wavelet decomposition of a short one-dimensional signal of 32 samples.

The DWT is typically (as in Fig. 3-3) applied recursively to the approximation

coefficients, generating several levels of detail coefficients; each level of detail coef-

ficients then represents the detail lost by decimation at that iteration of the trans-

form. Each detail coefficient in the resulting set is localized in time as well as being

associated with a ‘scale’, or level of detail. The detail coefficients will generally be

low in magnitude, except near areas of change for a given scale. This sparsity facil-

itates efficiently compressing the data. For a well-written introduction to wavelets,

DeVore and Lucier provide an excellent reference[24]. As the DWT is separable,

multi-dimensional data can be transformed a single dimension at a time, following
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¼ Scale

¼ Scale

Level Coefficients Level Contribution Cumulative Reconstruction

Figure 3-3: Wavelet coefficient magnitude is shown by the stem plots at left. The
middle column indicates the sum of the inverse transformed wavelets at that level
of detail. By cumulatively summing the levels (right column), increasingly detailed
approximations to the original signal are produced until the original signal is re-
covered at the bottom right.

the same procedure.

3.1.4 Embedded Wavelet Coding

Progressive coding methods allow the reconstruction of intermediate data repre-

sentations at one or more ‘checkpoints’ within an encoded data stream. Fully Em-

bedded coding methods have the additional property that they do not require tar-

getting any specific image ‘quality’ or final size. Specifically, if data is compressed

twice with a fully embedded encoder, to sizesM andN , withM > N , then the first

N bits are identical in both files. This makes fully embedded coding methods well

suited to the underwater environment where computation ability is limited, com-

munication is packetized, and transmission rates can vary from packet to packet, as

it allows compression to be performed independent of the target transmission rate.

Messages sent to nearby AUVs for multiple vehicle collaboration could be sent at a
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higher rate, and those destined for a surface ship or transmission over longer dis-

tances can be sent at a more conservative rate without any need for recompression

of the data. Low-fidelity color image thumbnails, transmitted at rates as low as a

few hundred bits per image, can later be used as a basis for more refined versions

of the same image. If the entire bitstream is sent, the compression process is en-

tirely reversible and results in the original datawith no loss of precision. Combined

with the success of wavelet-based analysis techniques in the underwater domain,

this suggests underwater AUV networking can greatly benefit from the use of fully

embedded wavelet compression.

The Embedded Zerotree of Wavelets (EZW)[103] algorithm is one early exam-

ple, which led to themore efficient Set Partitioning inHierarchical Trees (SPIHT)[95]

coding method, and derivatives[120, 125]. Each of these compression algorithms

follows a similar process of three main steps. First, the DWT is applied to the data,

resulting in a set of coefficients in the wavelet domain. Second, these (typically

floating-point) coefficients are requantized as signed fixed point numbers. Finally,

this fixed-point representation is encoded in an algorithm-specific way, which re-

sults in a sequence of bits. Any truncated portion of this bitstream can be decoded

into a signed fixed-point approximation to the wavelet coefficients, after which the

Inverse DWT restores an approximation to the original data. Each algorithm can

be used effectively on scalar data, imagery, or even 3D volumetric data. For clarity,

I discuss the one dimensional approach first, and then extend to imagery.

3.1.5 Image Synthesis using Texture Patches

Natural photographs exhibit intra-image redundancy, including smooth-varying

colors and luminance. Embedded wavelet coding relies on this redundancy to

transmit a facsimile of the image in fewer bytes than the uncompressed image

would consume. With respect to its use for underwater image telemetry, there are

two aspects of embedded wavelet compression methods that merit closer scrutiny.

First, fine texture details are quickly lost at high compression ratios, due to the

smoothing effects of the wavelet compression. This is undesirable if the informa-
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tion surface operators hope to extract relies on the fine-scale texture of the image.

Brown rocks and brown coral appear quite similar after smoothing out fine-scale

details, for example, yet differentiating between classesmay be important to surface

operators. Second, when taking multiple photographs of a single area, there will

be significant redundancy not only within each image, but across the set of images.

Wavelet compressors are highly efficient at encoding intra-image redundancy, yet

make no use of this inter-image redundancy.

Video compression techniques do make use of recurrence across frames, yet

they do so in a time-localized manner. Rather than considering every frame previ-

ously recorded, they consider only those frames within immediate time proximity,

and assume thatmotion is a dominant cause of inter-frame changes. For example, if

a video began recording an outdoor scene, thenmoved indoors to a different scene,

then returned to the same outdoor scene again, the compression of each outdoor

scenewould be completely independent. Compression of the second outdoor scene

would not take advantage of the fact that this set of imagery is highly redundant of

the first outdoor scene. Each video image is only compressed relative to the similar

images in an adjacent time period.

When AUVs are compressing sequences of repetitive static imagery, the over-

lap of sequential frames may be low or non-existent, limiting the utility of motion-

compensation as a compression technique. However, prior information may be

available about the contents of the images in terms of texture, even though each

individual image may be of different time periods and locations and thus vary sig-

nificantly. Even though a single image may not look very similar to the previous

image overall, the imagemay feature textures and objects very similar to those seen

in prior images. Section 3.3 presents a compression option, nicknamed Image Syn-

thesis, which utilizes the inter-frame redundancy of underwater data to provide

extremely high compression while preserving some texture information.
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Figure 3-4: A wavelet decomposition at upper left, followed by the reconstruction
from increasingly length SPIHT bitstreams. As the number of bits grows, the re-
construction is closer to the original coefficients. Coefficient signs have not been
have been depicted.

3.2 Fully Embedded Wavelet Coding

SPIHT, its progenitor EZW[103], and similar algorithms, treat the wavelet decom-

position as a tree of coefficients, rooted at the lowest level approximation coeffi-

cients. Many real signals that have large magnitude coefficients at high levels also

have higher magnitude coefficients at lower levels. Fully embeddedwavelet coders

exploit this cross-level correlation. SPIHT does this via a clever sorting algorithm.

As the authors write in their tutorial on the topic[78, p95], set partition coding
. . . is a procedure that recursively splits groups of [coefficients] guided

by a sequence of threshold tests, producing groups of elements whose

magnitudes are between two known thresholds.
A SPIHT-encoded bitstream consists of a sequence of refinement bits and sorting

bits, interlaced in a data-dependent order. Sorting bits provide an efficient way

to identify high magnitude, and therefore important, wavelet coefficients. Refine-

ment bits provide a continually improving estimate for the magnitude of a wavelet
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coefficient. In particular, sorting bits indicate:

• whether a coefficient is greater in magnitude than the current threshold, or

‘significant’,

• whether any descendant in the wavelet tree of the currently considered coef-

ficient is ‘significant’, and

• whether any grand-descendant is significant.

Refinement bits indicate either the sign of a coefficient, or a single bit of a coeffi-

cient’s magnitude.

Refinement bits provide a continually improving estimate for the magnitude of

a wavelet coefficient. Sorting bits provide an efficient way to identify high magni-

tude, and therefore important, wavelet coefficients. Fig. 3-4 shows the progressive

reconstruction of a small set of coefficients using an increasing number of (indi-

cated) bits.

3.2.1 Scalar Environmental Data

Fig. 3-5 and 3-6 display respective approximations for the original scalar temper-

ature and Eh data of Fig. 3-1 using an example fully-embedded wavelet coder,

SPIHT, compared to themore traditional approach of interpolating quantized sam-

ples. These two coders are compared for each signal at three different encoding

sizes: 28 bytes, 56 bytes, and 112 bytes. Paying particular attention to the extrema of

each signal, the SPIHT encoded signals clearly better represent both original signals

than the spline-interpolation at all three byte sizes. An additional side-effect of the

full-embedded wavelet coding is that the reconstructed signal has been de-noised;

discarding low-magnitude coefficients is an effective form of noise reduction [124].

In order to quantify the benefits of encoding the temperation and Eh scalar data

with SPIHT, Fig. 3-7 displays the root mean squared error (RMS error) versus sig-

nal size for SPIHT and two interpolation coding methods. Here it can be seen that

SPIHT displays significant improvement in data fidelity across a wide range of

63



14 Spline-Interpolated 16-bit Fixed Point Samples

SPIHT Encoded with 28 Bytes

28 Spline-Interpolated 16-bit Fixed Point Samples

SPIHT Encoded with 56 Bytes

56 Spline-Interpolated 16-bit Fixed Point Samples

SPIHT Encoded with 112 Bytes

Figure 3-5: SPIHT-encoded scalar temperature data at different levels of compres-
sion, compared to interpolating quantized samples. The original data is shown in
gray in each graphwhile the black lines represent the various approximations. The
approximations are grouped into three sets of SPIHT vs. fixed-point comparisons
where each pair is encoded with the same number of bytes.
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14 Spline-Interpolated 16-bit Fixed Point Samples

SPIHT Encoded with 28 Bytes

28 Spline-Interpolated 16-bit Fixed Point Samples

SPIHT Encoded with 56 Bytes

56 Spline-Interpolated 16-bit Fixed Point Samples

SPIHT Encoded with 112 Bytes

Figure 3-6: SPIHT-encoded scalar Eh data at different levels of compression, com-
pared to interpolating quantized samples. The same original data is shown in gray
in each graph while the black lines represent the various approximations. The ap-
proximations are grouped into three sets of SPIHT vs. fixed-point comparisons
where each pair is encoded with the same number of bytes.
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Figure 3-7: Comparison of SPIHT encoding with subsampling methods for Tem-
perature data (top) and reduction potential data (bottom) across a wide range of
encoding qualities.

transmission rates, when compared to simple subsampling. The received signal

is both qualitatively (Fig. 3-5 and 3-6), and quantitatively (Fig. 3-7) more similar to

the original data than the interpolated data points.

3.2.2 Segmenting Scalar Data

While a single image is easy to consider as a distinct ‘resource’, transmitting envi-

ronmental sensor data requires identifying a section of data to transmit. This is best

done by breaking a time-series into large chunks of data – for correlated time-series

data, compressing a few samples at a time is much less efficient than compressing

long sequences simultaneously. Fig. 3-8 shows this result while piecewise com-

pressing a long series of temperature data.
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Figure 3-8: This figure shows the reconstruction error (Y axis, in RMSE) versus
the compression level (X axis, in bits) for the two hour sequence of temperature
data. Each plotted line shows the result of compressing the full dataset, but doing
so by different length subsets of the data at a time. Since the original temperature
data was collected at four Hertz, compressing 8192 samples at a time would be
equivalent to transmitting updated data every 34 minutes, versus every 30 seconds
when data is compressed 128 samples at a time. Encoding more samples in each
transmission lowers the reconstruction error for any given compression level.

3.2.3 Spatially Varied Quantization

Prior to being coded by the embedded wavelet coders described in this chapter,

wavelet coefficients are requantized into a standard sign-magnitude representa-

tion. While the level and method of quantization depend on the dynamic range

of the time-series data, the quantization is typically constant for all wavelet coeffi-

cients.

Occasionally, it may be of value to provide higher fidelity to certain sections

of data. Accenting recent data would allow decisions to be made about nearby
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Figure 3-9: Standard SPIHT compared to time-varying quantization. Note that
time-varying quantization performs better on the more recent data.

features of interest before they are left far behind. Images may have one or more

regions of interest that warrant a higher quality encoding. I propose that this can be

achieved by artificially pre-scaling the wavelet coefficients using a weighting func-

tion, prior to quantization. As wavelet coders prioritizes higher magnitude coeffi-

cients, this leads to greater detail being conveyed in those areas of the reconstructed

signal at the cost of lower detail elsewhere. The receiver must also know the cost

function so that the inverse weighting can be applied after decoding wavelet coef-

ficients. This strategy has been employed to generate Fig. 3-9; wavelet magnitudes

were artificially prescaled prior to encoding them with SPIHT.

cn =

218 n = 1

2{16+ 2x
n−1

: x∈N0, x<n} n > 1

(3.1)
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The weighting function used in Fig. 3-9 was generated using the logarithmically

increasing sequence of quantization coefficients shown in Equation 3.1, where n is

the number of coefficients. This results in more recent data being encoded with

higher fidelity than older data. In the case of an image, the coordinates and scale

for regions of interest could be transmitted along with the encoded image data,

which would be used to derive the applied weighting function.

3.2.4 Imagery

(a) Pillow Lava (Southern Mid-
Atlantic Ridge)

(b) Coral Reef (Puerto Rico)

(c) Airplane (Santa Barbara, CA) (d) Fish and Sand (Santa Barbara,
CA)

Figure 3-10: Representative imagery, captured by the SeaBED AUV. The four im-
ages shown are used to illustrate the performance of SPIHT on typical underwater
imagery, relative to the current state of the art.
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SPIHTwas originally designed for photo compression, and can be used on high

dimensional datasets as well as scalar data. Two-dimensional data like imagery is

simply transformed with the 2D form of the DWT, and then SPIHT coded follow-

ing a similar process as the 1D version. To encode color images, each color plane

is encoded independently. As humans are more sensitive to changes in luminosity

than changes in chromaticity, encoding in either the YUV or Lab color space simpli-

fies allocating bits to the most important data, with the U and V color planes being

encoded with a much smaller allowance than the luminance plane.

Fig. 3-10 displays four images, captured by the SeaBED AUV, which are repre-

sentative of the types of images desired by human operators during an AUV mis-

sion. These images were resampled to 1024 × 1024 pixel source images and then

coded using SPIHT, JPEG 2000, and progressive JPEG at three different levels of

quality. Fig. 3-11 displays the reconstruction error versus number of bytes for each

of the images using each coder. The JPEG 2000 data has visible nonlinearities indi-

cating discrete quality ‘checkpoints,’ while the errors associatedwith SPIHT follow

a smooth reduction curve as the size of the transmitted file increases. We also see

from these graphs that JPEG is largely incapable of encoding large images at the

low sizes available through SPIHT.

Fig. 3-12 displays the same metrics as Fig. 3-11 but encodes versions of the im-

ages in Fig. 3-10 that have been resampled to a smaller size of 256 × 256 pixels.

Again, there are visible discrete quality ‘checkpoints’ evident in the progressively

coded JPEG 2000 data, while SPIHT coding provides a smooth compression curve.

JPEG performs adequately at larger filesizes; however the error increases substan-

tially at lower file sizes reached. It was hypothesized that the lower quality (smaller

q) JPEG coders would perform better than the higher quality JPEG coders at lower

numbers of bits. However, somewhat counter-intuitively, the higher-quality JPEG

compression coders typically resulted in better image quality (less RMS Error) even

for small target filesizes. JPEG is simply not suited to compression at these ratios.

The mean reconstruction error across all four images of Fig. 3-10 is displayed

in Fig. 3-13. The solid lines correspond to the 1024 × 1024 pixel source images of
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(d) Fish and Sand

Figure 3-11: Reconstruction error versus number of bytes for the four representative
images shown in Fig. 3-10, encoded from 1024×1024 pixel source images. Compar-
ing the discrete quality ‘checkpoints’ visible as ‘bumps’ in the progressively coded
JPEG 2000 (JP2K) data, with the smooth progression of the SPIHT coding, we learn
that JPEG is largely incapable of encoding large images at these low sizes.
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Figure 3-12: Reconstruction error versus number of bytes for the four images shown
in Fig. 3-10, encoded from small, 256 × 256, pixel source images. Discrete quality
‘checkpoints’ are very evident as ‘bumps’ in the progressively coded JPEG 2000
(JP2K) data, while SPIHT coding provides a smooth compression curve. JPEG
performs adequately at larger filesizes, until reaching the target encoding quality.
Counter-intuitively, the higher-quality (larger q) JPEG compression typically has
better image quality even at lower filesizes.
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Figure 3-13: The mean reconstruction error across all four images from Fig. 3-10.
The solid lines indicate versions of the images that were 1024× 1024 pixels in size,
the dashed lines represent images that are 256× 256 pixels. Beyond the benefits of
the fully embedded coding, SPIHT clearly provides the highest compression per-
formance for both small and large imagery.

Fig. 3-11, while the dashed lines represent the 256× 256 pixel source images of Fig.

3-12. This summary chart shows that beyond the aforementioned benefits of fully

embedded coding, SPIHT clearly provides higher compression performance than

JPEG or JPEG 2000 for both small and large imagery target sizes.
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3.3 Image Synthesis

Figure 3-14: Percentage of coral cover for each image. Black line is the 11-point
median-filtered percentage, computed from the individual samples. Note that ar-
eas dominated by sand and rubble both correspond to areas of low coral cover.

Extensive anthropogenic damage to shallow-water coral has been well docu-

mented [38][29], yet it is much more challenging to study the health of coral reefs

below diver depths. AUVs allow scientists to not only reach deeper than a single

diver, but cover more area as well [4]. Unfortunately, transmitting imagery at high

enough quality to distinguish healthy coral from rubble requires significant sub-

sampling of the captured imagery, as fine-scale texture information suffers from

significant blurring in wavelet compressed imagery at high compression.

Wavelet compressors are highly efficient at encoding intra-image redundancy,

having amongst the highest known compression ratios on single images. Given the

limited bandwidth available, and the significant quantity of imagery that AUVs

capture, it would be nice to also take advantage of inter-frame redundancy. One

way to do that is to compute scalar metrics (e.g. percent coral cover) and trans-

mit those instead of the individual images. Such a technique allows the content

of imagery to be communicated much faster than a compressed image, describing

entire datasets in a few hundreds of bytes. When such a metric is the goal of data

acquisition (e.g. measuring the percentage of coral cover), this scalar metric ap-
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proach is an extremely efficient way of communicating information about imagery

acquired subsea. Fig. 3-14 plots the percentage of each image covered in coral for a

dataset acquired by the author as part of a study on the long-term health of deep-

sea coral reefs near Puerto Rico. Distinctive changes in imagery correspond well

with changes in the percentage of coral cover, as illustrated.

Still, this representation sacrifices information about the distribution of coral

within these specific images, and about the character of each imagemore generally.

I now present a middle ground between these two extremes of imagery and scalar

image statistics nicknamed Image Synthesis.

3.3.1 Image Synthesis

Image Synthesis employs inter-image repetition in texture space to summarize in-

formation about the contents of an image, allowing an extremely compact repre-

sentation to be communicated while still allowing estimations of scalar texture-

based metrics such as the percentage of coral cover based on the received image.

The resulting imagery can be transmitted in much less space than the compression

techniques described previously in this chapter, consuming only tens of bytes per

image on average. To achieve high compression ratios I employ both inter-image

and intra-image redundancy in texture space by describing each new image as a set

of previously seen image texture patches. This allows the surface reproduction of

imagery with rich textures, at the cost of a decreased ability to communicate previ-

ously unseen imagery. A single image compressed using each of these techniques

is shown in Fig. 3.1, along with a time-series representation of the percentage coral

cover. Parts (a), (b), and (c) of this figure each represent embedded-wavelet com-

pressed versions of the image at different sizes. Part (d) represents the image com-

pressed using the image synthesis method. The largest SPIHT image (a) clearly

provides a better representation of the true image than the synthesized image (d).

Comparing the synthesized image (d) to a SPIHT image of comparable file size (c),

the image synthesis technique is more appealing. Additionally, the percentage of

coral cover could be trivially computed from the synthesized image, whereas it is
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nearly impossible to determine from the comparably sized SPIHT image. Part (e)

shows that computing the percentage of coral cover from synthesized images (blue

line) provide a reasonable estimate of the true coral cover (black line). Note that,

alternatively, the percentage of coral cover for every image could be transmitted as

a scalar time-series (green line).

The procedure for compressing a sequence of images using Image Synthesis

consists of four steps, depicted in Fig. 3.2. First, source imagery is segmented and

classified into areas of similar texture. Second, this segmented image is drastically

subsampled, resulting in a low-resolution map of texture blocks within the image.

Third, each of these masks are encoded in a non-sequential but deterministic or-

der, using an arithmetic coder. Finally, when each mask is received on the surface,

a texture synthesis procedure is used to synthesize an image similar to the one

compressed. I proceed with further description of each of these steps in turn.

3.3.2 Image Segmentation

Segmentation and classification of seafloor imagery remains an active research topic

in underwater robotics. Pizarro, Rigby et al.[82][83] have presented results ob-

tained with a ‘bag-of-features’ approach, using SIFT descriptors as their feature

space. Loomis[62] obtained high classification ratios using only 5x5 patches as tex-

tons, and by developing a classifier that relied on boosting. The approach pursued

here for this dataset is inspired by, though different from, the efforts of Kaeli et

al[56] using morphological image processing on a similar data set. I document

below the segmentation and classification used on this dataset in the interest of

completeness, though the recent work described above would provide a more ap-

propriate starting point for future implementers seeking a flexible implementation.

The segmentation and classification procedure described here results in a classifi-

cation mask containing regions in one of four classes: sand, rubble, M. Annularis

coral, and unclassifiable (such as shadows). For all examples in this section, the

dimensions of the source imagery are 504× 504 pixels.

Each image is processed independently. Initially it is converted to an eight-bit
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(a) SPIHT (400x400 @ 0.04bpp) (20,000
Bytes)

(b) SPIHT (400x400 @ 0.004bpp) (2,000
Bytes)

(c) SPIHT (400x400 @ 0.0004bpp) (200
Bytes)

(d) Synthesized (116 Bytes)
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(e) Percent Coral Cover (200 Bytes)

Table 3.1: Coral reef imagery, encoded using the full spectrum of techniques de-
scribed by this thesis. Note that calculating the percentage of coral cover from
the 200 Byte SPIHT-encoded image would be impossible, yet is trivial for the syn-
thesized image. Communicating the same statistic as scalar data allows the entire
dataset to be represented in the same number of bytes. Each of the time series’ has
been filtered with an 11-point median filter for clarity.
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(a) Source Image (b) Segmented + Classified Mask

(c) Subsampled Classification Mask (d) Entropy Coding

(e) Synthesized Image, with Cuts (f) Final Synthesized Image

Table 3.2: The original image is shown in (a). The image following segmentation
and classification is shown in (b). Part (c) next displays the subsampled image,
(d) represents the relative sizes of the data as encoded naively (8 bits per pixel),
using quantization alone (2 bits per pixel), and using arithmetic coding (0.07 bits
per pixel). The reconstructed image is shown in (e) and (f), with and without inter-
tile boundaries.
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(a) Source Image (b) Classification Results

(c) Source Image (d) Classification Results

(e) Source Image (f) Classification Results

Table 3.3: Segmentation and classification results, computed using hand-tuned lo-
cal image statistics.
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Y ′CBCR colorspace, separating luminance and chrominance data. For each result-

ing channel, the local mean and variance are computed for a 5× 5 neighborhood at

each pixel. A sequence of binary thresholding operations over these statistics, and

comparisons, form the basis for the classifications. After each class is identified, it

is smoothedwith amorphological Alternating Sequence Filter (ASF)[25] to smooth

the classification. This smoothing is done with a circular structural element as de-

scribed in Kaeli et al[56]. Classification was performed sequentially on a per-class

basis, using manually tuned thresholds. While the thresholds were manually se-

lected, the final classification procedure performed well on each of the 919 images

in the dataset.

The resulting image masks for three distinct images are shown in Fig. 3.3. After

a classification mask has been produced for each image, the mask is subsampled.

This subsampling is not performed through simple decimation or interpolation,

but by computing the dominant class within a grid of fixed-size windows. Grid

cells overlap adjacent grid cells by a constant amount, as seen in Fig. 3-15.

0,1 0,3

Figure 3-15: A schematic of the grid used for subsampling the classification mask,
illustrating the overlap between adjacent cells. Note that the lack of overlap at im-
age edges means that a simple interpolation would bias the resulting mask.

This procedure accounts for overlap between adjacent texture patches that will

occur during the final phase of image synthesis. As a result of this overlap, sub-

sampling a 504 × 504 pixel image with a 24 × 24 pixel window that overlaps by

four pixels yields a square mask 25 pixels per side, rather than 504
24

= 21 pixels on a
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side as might be expected. Within each window, the most common identified class

(statistical mode) is taken as the subsampled tile class. For the imagery presented

here, 24× 24 pixel grid cells were used, overlapping by 4 pixels.

3.3.3 Arithmetic Coding of Texture Masks

At this point, a low-resolution mask of texture classes has been generated. The

simplest approach would be to represent each texture class with an integer, and se-

quentially encode themask pixels. For the four-class images shownhere, eachmask

pixel could be represented in only two bits, resulting in a size of d25×25×2
8
e = 157

bytes per mask for the parameters used here. Compressing an image with dimen-

sions (hi, wi), using patches of dimension (hp, wp) that overlap by o pixels in each di-

mension, each containing one of c texture classes, would require d hi−o
hp−oed

wi−o
wp−oe log2 c

bits. Each texture class is not uniformly probable, however, and the pixels are not

statistically independent of each other. Given these facts, the use of entropy coding

offers the ability to shrink this image representation even further.

Arithmetic coding allows for the optimal encoding of a sequence of symbols

when the probability distribution of those symbols is known to both the encoder

and decoder. Adaptive arithmetic coding[129] provides for near-optimal encod-

ing by learning the probability distribution as the sequence is encoded or decoded.

The most simple adaptive coders simply generate a frequency table of coded sym-

bols, and use that as the probability distribution for the next symbol. More elab-

orate probabilistic models can be built by tracking the conditional frequencies of

symbols based on, for instance, the previously encoded symbol. In the sequence

AAAABBBBAAAAAAAA, for instance, B is not a particularly likely symbol. If we

track conditional probabilities, we see that B has a much higher likelihood of ap-

pear immediately after another B, and can build a better probabilistic model of our

sequences.

The choice of an appropriate adaptive model can have significant impact on

the efficiency of the arithmetic coding. Table 3.4 shows the results of encoding a

sequence of 919 texture masks using an adaptive arithmetic coder, with each of
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mi-1

mi-w

mimi-2

Context Mean Median Std. Dev.
(Bytes) (Bytes) (Bytes)

mi−1 49.60 51.0 14.65
mi−1,mi−2 49.44 51.0 14.62
mi−1,mi−w 40.98 42.0 11.89

Table 3.4: Comparison of Arithmetic Coding Models. Table shows average size in
bytes for transmitting a single image using the specified adaptive model.

three different adaptive models. The first model conditions probabilities upon the

texture class of the previous pixel. The second model conditions the probabilities

upon both of the previous two pixels. The third, and most effective model, condi-

tions the probabilities on the previous pixel and the pixel directly above the current

pixel. Note that it is not possible to condition on future pixels, as the decoder will

not have access to those pixels until after decoding the current one. As seen in Ta-

ble 3.4, conditioning probabilities upon the pixel directly above the current one in

addition to the previous pixel results in a significant improvement in encoding ef-

ficiency. The encoded size of each mask is plotted in Fig. 3-16 for the first and third

adaptive models.

Source images with large regions of constant textures will have less entropy in

the texture mask. This can significantly increase the efficiency of the arithmetic

coder, resulting in a smaller compressed representation of the image. As one ex-

ample, Fig. 3.5 consists of almost entirely two texture classes, rubble and sand,

arranged as two large regions. The texture mask, before and after downsampling

to 25x25, are also shown in Fig. 3.5. After arithmetic coding, the texture mask con-

sumes only 27 bytes. The average size for this dataset, in contrast, was 41 bytes.

The amount of entropy of the textures in the compressed imagery is easily com-

puted from the transmitted imagery, and could be used subsea for image selection,

computed on the surface for received images, or transmitted as a separate scalar

statistic.

Rather than encode these texture masks in the order that the source images

were captured, I encode themasks in a deterministicmanner that provides samples

from across the entire sequence, gradually filling in the entire time-series of images
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Figure 3-16: The number of bytes required to transmit each image using arithmetic
coding is shown for two different adaptive models. By utilizing both the previous
neighbor and the neighbor above each new pixel, the data may be compressed fur-
ther (blue) than when only utilizing the previous neighbor (green). Note the much
higher performance of the model incorporating the vertical neighbor when coding
a sequence of images near the end, each of which is entirely sand. Both signals are
filtered with an 11-point median filter for clarity.

rather than encoding each image in turn. This allows surface operators to quickly

get a rough idea of an entire dataset, rather than a clear view of the beginning of

a dataset. Specifically, for a sequence of n images, I iterate through the sequence

with a step size of n−1
2
, beginning with the first image. When I reach the end of

the sequence, I reduce the step size by half, and continue from the beginning of the

sequence, skipping images which have already been encoded.

3.3.4 Image Synthesis

After receipt of a texturemask, a new image is synthesized by the recipient tomatch

the form of themask. In Efros and Freeman[30] amethod for synthesizing textures,

nicknamed “Image Quilting”, is presented. The synthesized textures are generated

from patches of a source texture, selected to meet some minimum error criterion.

Much of the seafloor consists of large swaths of repetitive textures - sand and rub-

ble on a macro scale, and the fine-grained textures of coral and on a microscale.
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(a) Source image exhibit-
ing large constant-texture
regions

(b) Texture mask for source
image

(c) Downsampled texture
mask

Table 3.5: Constant-texture images, like this one, have less entropy in the texture
mask. This results in greater coding efficiency during the arithmetic coding stage.

This texture synthesis approach can be used effectively on individual textures to

generate high resolution samples from low-resolution samples, as in Fig. 3.6, 3.7,

and 3.8.

To synthesize an image which is compatible with the received texture mask,

then, each patch must be drawn from a source texture corresponding to the class

of that pixel in the mask. As each texture mask is decoded by the recipient, it is

used to synthesize an image with high-resolution textures, closely approximating

the original image. The quilting process, adapted from Efros and Freeman[30], is

completed as follows:

1. For a received texture mask with dimensions h × w, a patch size of t, and

overlap o, initialize an empty destination image with dimensions (h · (t− o)+
o, w · (t− o) + o).

2. Go through the received texture mask in raster scan order. For each pixel,

search the source texture corresponding to that pixel’s class for a set of patches

that match the patches it overlaps within some error tolerance. Randomly

pick one of these patches.

3. Compute the error surface between the newly chosen patch, and the patches

it overlaps. Find the minimum cost path along this surface and make that the
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(a) Montastraea Annularis
(192× 192)

(b) Synthesized Montas-
traea Annularis texture

(c) Synthesized Montas-
traea Annularis texture
with Minimum-Error Cut
boundaries

(d) Montastraea Annularis
(256× 256)

(e) Synthesized Montas-
traea Annularis texture

(f) Synthesized Montas-
traea Annularis texture
with Minimum-Error Cut
boundaries

(g) Montastraea Annularis
(256× 256)

(h) Synthesized Montas-
traea Annularis texture

(i) Synthesized Montas-
traea Annularis texture
with Minimum-Error Cut
boundaries

Table 3.6: Synthesis Results for Montastraea Annularis Textures. Synthesized tex-
ture is (504× 504) pixels. Textures are synthesized from 24× 24 pixel patches.
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(a) Rubble (192× 192) (b) Synthesized Rubble tex-
ture

(c) Synthesized Rubble tex-
ture with Minimum-Error
Cut boundaries

(d) Rubble (256× 256) (e) Synthesized Rubble tex-
ture

(f) Synthesized Rubble tex-
ture with Minimum-Error
Cut boundaries

(g) Synthesized Combined
Rubble texture, (24 × 24)
patches, (504× 504)

(h) Synthesized Com-
bined Rubble texture
with Minimum-Error Cut
boundaries

Table 3.7: Synthesis Results for Rubble Textures. Synthesized texture is (504× 504)
pixels. Textures are synthesized from 24 × 24 pixel patches. The third row repre-
sents synthesis from a combination of both rubble textures (a) and (d).
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(a) Gorgonian (192× 192) (b) Synthesized Gorgonian
texture

(c) Synthesized Gorgonian
texture with Minimum-
Error Cut boundaries

(d) Brain Coral (256× 256) (e) Synthesized Brain Coral
texture

(f) Synthesized Brain Coral
texture with Minimum-
Error Cut boundaries

(g) Sand (256× 256) (h) Synthesized Sand tex-
ture

(i) Synthesized Sand tex-
ture with Minimum-Error
Cut boundaries

Table 3.8: Synthesis Results for Miscellaneous Textures. Synthesized texture is
(504 × 504) pixels. Textures are synthesized from 24 × 24 pixel patches, with four
pixels of overlap.

87



boundary of the new patch. Paste the patch onto the destination image.

For both the second and third stages of this algorithm, the error between patches

was computed as the L2 in a scaled Y ′CBCR space, where the Y channel error is

scaled by 1.3, and each chrominance channel error is scaled by 0.85, more heavily

weighting luminance errors over chrominance errors. Three images generated us-

ing this full technique, including theminimumcost paths between adjacent patches,

are shown in Fig. 3.9. Note that since the current encoding does not transmit any

color information explicitly, there may be a mismatch in the color or appearance

of the synthesized image relative to the first image. The nearness of the match

between the synthesized image and the original image depends upon how broad

the set of textures are within one texture class. Not transmitting color information

keeps the compressed size down as far as possible (.0004 bits per pixel per color

channel for this dataset, on average). Were color information sent up as well, it

could be used as a constraint during the texture synthesis phase as described in

Efros and Freeman’s original paper[30]. In this way, the color information of a low

resolution SPIHT image could be combined with the texture information of a syn-

thesized image, for example.

3.4 Discussion

In this chapter I have laid out several options for compressing telemetry fromAUVs,

including methods applicable to both environmental data and imagery. For im-

agery, I have illustrated a range of encoding options: treating summary statistics

as time-series, communicating texture information via Image Synthesis, or trans-

mitting full images with embedded wavelet compression. While selection of the

appropriate technique from these options must be done with an understanding of

the problemdomain, the techniques are complimentary. For typical AUVmissions,

a combination of all the approaches described in this thesis may be appropriate.
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Table 3.9: Three full 504 × 504 pixel images synthesized using this approach from
24× 24 pixel patches, with four pixels of overlap between adjacent patches.
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CHAPTER 4

CAPTURE Architecture

Having outlined the approach to compression and relay communication underly-

ing thiswork, I describe here how to integrate those two components into a full end-

to-end communication architecture for relaying acquired data from an AUV across

an acoustic network ofmarine vehicles. This architecture is nicknamedCAPTURE—

a Communications Architecture using Progressive Transmission via Underwater

Relays and Eavesdroppers. CAPTURE relies on progressive transmission to com-

municate data as a sequence of gradually improving “previews”. High-quality ver-

sions of these previews, up to an error-free reconstruction, can be requested by op-

erators immediately, or at any later time over the course of a mission. CAPTURE

has been designed to facilitate efficient multi-hop relay communication across a

small group of vehicles, where the vehicles involved may be from different manu-

facturers, or have different software architectures.

4.1 Overview

CAPTURE consists of four distinct components, shown in Fig. 4-1. First, a set of

data is acquired by the AUV and registered as a transmittable resource with the

telemetry system, via a platform-specific driver. Examples of possible resources

include a single image, or a time-series of measurements from a single sensor. The

platform-specific drivers isolate the telemetry system from the specific capabilities

or limitations of each host vehicle. Second, new resources are automatically se-

lected for compression and transmission to the surface, or existing resources are

selected for further transmission based on requests from the surface. Automatic
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Figure 4-1: High-level overview of data flow through the four main components
of CAPTURE. Platform drivers connect acquired data into the CAPTURE system,
which is then winnowed down, compressed, and eventually transmitted to the sur-
face.

selection provides an avenue for high-level algorithms, such as mine identification

or other interest operators, to guide the selection of interesting telemetry. Third,

selected resources are compressed using progressive coding methods. Progres-

sive coding methods, specifically those that are fully embedded, ensure that an

approximation to the data can be reconstructed with each newly received bit of

data. Finally, the transmission of the resource to the surface is managed to ensure

end-to-end delivery. When multiple underwater vehicles are available, interme-

diate vehicles can relay data to the surface as hops in the route, or help through

‘eavesdropping’. The flow of data between the four subsystems is shown in detail

in Fig. 4-2, and each subsystem is described in detail in the following subsections.
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Figure 4-2: A detailed view of the interactions between CAPTURE components,
particularly the role of the platform drivers. Blue indicates the path of a resource
(such as an image) through CAPTURE; red and green indicate vehicle state and
control messages bypassing the majority of CAPTURE components.

4.2 Platform Drivers

The platform drivers provide an interface to the existing software on each different

vehicle platform. Software architectures vary significantly from vehicle to vehicle,

as do sensing and computation capabilities. Platform drivers smooth over these

architectural differences by providing:

• An interface for data transmission and reception via the modem,

• Configuration of resource registration and prioritization,

• Handling of non-CAPTURE acoustic traffic, such as command and control

messages, and

• Logging support via LCM[50].

Physical connections to the vehicle’s acoustic modem vary, but most are con-

nected to an RS-232 serial port. Each modem manufacturer provides a different
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software interface to the end user—there does not yet exist a common API shared

by multiple manufacturers such as the Hayes / AT Command Set that dictated the

course of terrestrial telephone modems. Webster et al. previously developed a mo-

dem abstraction layer for the WHOI MicroModem[127]. More recently, the Goby

Autonomy Project[100] has made advances in developing a generic abstraction for

acoustic modems and implementing drivers for physical modem hardware. These

drivers allow software to operate independent of the modems’ underlying propri-

etary languages. Goby was used in the field experiments to provide a low-level

vendor-neutral interface to the acoustic modem.

AUVs will require some configuration, such as information about any acoustic

range-based navigation systems that are in use, or the specification of a fixed MAC

communication cycle. Each modem requires a unique integer identifier, typically

specified as part of the configuration. That configuration is performed through

the platform driver. The platform driver is also responsible for registering existing

sensors, such as cameras, sonars and CTDs, as resource generators. The impor-

tance of different resources will vary by mission and vehicle, so their prioritization

may require pre-mission configuration by users. Some vehicles may only register a

single camera and transmit imagery. Other vehicles may switch between multiple

sensors, such as a camera and a CTD, selecting between the resources during the

prioritization phase. Command and control messages, such as vehicle aborts or

mission changes, are also delivered by the driver to appropriate handlers.

4.3 Resource Prioritization

Modern AUV platforms generate orders of magnitude more data than could pos-

sibly be transmitted to the surface—the first task facing any telemetry system is to

prioritize which data should be transmitted. At any given time, surface operators

can choose whether to request refinement of a specific resource or whether to al-

low the vehicle to automatically select new resources for transmission. For vehicles

with multiple sensors of interest, it is also necessary to multiplex the transmissions
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between those sensors. These steps can be quite simple, such as always sending

the most recent resource registered by a single sensor. More complex missions

may involve significant computation in this step, such as identifying seafloormines

through image analysis. YogeshGirdhar has published a sequence of papers[39, 40,

41, 42] on identifying a subset of images that appropriately describe an entire col-

lection - similar to the problem of selecting an appropriate subset for a slideshow.

These papers include both offline methods, useful for identifying a summary sub-

set after a dive, and online methods. The online identification method (nicknamed

ONSUM) builds the summary set as new images are being acquired, making it ide-

ally suited to telemetry prioritization. Thesemethods have been testedwith several

datasets, including one from a small shallow-water AUV. Thompson et al[118] also

have earlier work on optimal prioritization of telemetry for the Zoë autonomous

rover, based on Hidden Markov Models.

Multiplexing of multiple sensors on a single vehicle could be donewith a round

robin scheduling-based approach, priority queues, or computed metrics. While a

single image is easy to consider as a distinct ‘resource’, transmitting environmental

sensor data currently requires breaking data into fixed-length segments for trans-

mission. This is best done with long sequences of data at time to maximize com-

pression, as discussed in Sec. 3.2.2.

4.4 Progressively Encoded Compression

After identifying a resource for transmission to the surface, that resource must be

compressed to maximize the throughput of the channel. CAPTURE relies on pro-

gressively coded compression methods—preferably fully embedded ones. CAP-

TURE transmits enough data to the surface to reconstruct a low-quality “preview”

of each automatically selected resource before moving onto a new resource. Due

to the progressive nature of the encoding, each new piece of data received on the

surface will allow an increasingly higher-quality representation of the resource to

be reconstructed. This serves two equally important purposes. If the “preview”
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piques the operator’s interest, the operator can request more encoded data from

that resource to refine the already-transmitted data with no wasted transmissions.

Every byte sent up for the preview will be used as the basis for the higher-quality

version. If, on the other hand, the resource is uninteresting, the operator may be

able to determine that after only a few transmissions and avoid wasting further

bandwidth to deliver a full preview.

4.5 Multi-Hop Networking

Origin

Relay

Hop

Hop

Hop

Endpoint

Eavesdropper

Eavesdropper

Relay

Figure 4-3: A large CAPTURE network, including multiple hops and eavesdrop-
pers. The vehicle selecting resources for transmission is known as the ‘origin’, and
the surface ship is the ‘endpoint’.

A CAPTURE network consists of multiple nodes, including an origin, endpoint,

zero or more ordered vehicles, and possibly some eavesdroppers, as shown in Fig.

4-3. Resources, such as photographs, are captured by the origin and relayed by

hops to the endpoint. The network can operate in either an automatic selection

mode where transmitted resources are automatically selected by the origin, or in a

refinement mode. When in automatic selection mode, enough data is relayed for
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the endpoint to reconstruct a low-quality preview of a resource. When the origin

learns that the endpoint has received enough segments to reconstruct a preview,

it will automatically select a new resource for transmission. Since the origin waits

until the endpoint has confirmed reception before moving on to a new resource,

more data may be transmitted than is required to generate a preview. The end-

point, typically a manned surface ship, can request that the network instead oper-

ate in refinement mode. In refinement mode, data continues to be transmitted for a

specific, previously-transmitted resource, selected by the endpoint. The origin and

hopswill relay additional data from that resource until the network is put back into

automatic selection mode by the endpoint.

4.6 Network Protocol

CAPTURE uses two types of network messages to communicate information be-

tween nodes: Chunk and Control messages. The bulk of traffic in a CAPTURE

network consists of Chunk messages.

4.6.1 Chunk Messages

Even after compression, resources will likely be too large for transmission by to-

day’s acoustic modems, and thus must be broken into segments. Chunk messages

consist of a single segment of data, along with the identifier for the segment’s posi-

tionwithin the resource, and a unique identifier for the resource itself. Chunkmes-

sages are designed to stand alone—any vehicle receiving a message can uniquely

identify the resource the segment belongs to, and the segment’s positionwithin the

resource, without any additional knowledge. Segments are of a fixed size, which

must be agreed upon within the network before deployment. The segment size

should be based on the Maximum Transmission Unit (MTU) supported by the mo-

dem hardware. For the WHOI MicroModem, this could be 256, 512 or 2048 bits

depending on the level of error correction that is applied. In plain English, an ex-

ample Chunk message could be: “The 4 th segment of SeaBED’s 33 rd resource consists
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of the following data . . .”. Control messages, sometimes referred to as acknowledge-

ments, are significantly more complicated.

4.6.2 Control Messages

The second type of message used in a CAPTURE network is a Control message.

Control messages contain a variety of data used to synchronize the state of the

network between nodes - including acknowledgement and routing information.

Control messages include the current resource identifier being transmitted by the

network, just like Chunk messages, but otherwise serve a different purpose. Each

network node tracks the segments, for each resource, that it knows each other node

to possess. The primary purpose of control messages is to convey partial estimates

of these ‘segment masks’ between CAPTURE nodes, acting as a selective acknowl-

edgement. In particular, the message indicates the highest known index of the

endpoint’s contiguously received segments, and encodes a bitmask indicating the

segments beyond that which are known to be possessed by network hops or the

endpoint. Control messages also identify whether the network is operating in re-

finement mode or automatic selection mode. One possible control message might

be: “The route consists of SeaBED, vehicle A, vehicle B, and the endpoint. SeaBED’s 33 rd

resource is being refined by request from the surface. The endpoint has received the first 9

contiguous segments. Beyond the 9 th segment, the hops and endpoint are known to have

received the following segments: . . .”.

Control messages also include the current route from the origin to the endpoint,

and a revision ID. The endpoint can alter this route or select a different vehicle as

the origin by incrementing the revision ID. The route consists of the hardware ID’s,

in order, for the nodes currently in the network: 〈origin,hopA, . . . , endpoint〉. The
overhead of this routing information would be substantial in traditional networks,

but addsminimal overhead for small numbers of vehicles. For networks with small

numbers of vehicles, a single network node can be identified by a few bits, and

routes can be expressed in a byte or two.
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4.6.3 Message Handling

Since the ocean is a broadcast medium, messages may ‘skip’ any individual hop in

a network, or even be communicated directly from origin to endpoint. There is no

guarantee or requirement that eachmessage be communicated along every node in

the route. When any message is received, some components of a message may be

ignored depending on the source of the message. In particular, some data is not as-

sumed to be valid unless it comes from upstream, closer to the origin, or downstream,

closer to the endpoint. For example, both Chunk and Control messages contain a

resource ID. If the network is believed to be in automatic selection mode, that re-

source ID is taken to be the currently active resource only if it came from upstream.

On the other hand, if the network is in refinement mode, the resource ID will be

taken as the active ID only if it came from downstream. This allows the origin to

control the transmission of automatically selected resources, yet also propagates

resources requested from the surface towards the origin when operating in refine-

ment mode.

When a Chunkmessage is received, the data segment it contains is stored at the

appropriate offset in the local copy of the resource. The receiving node also stores

that the transmitter has the segment.

Any node receiving a Control message first incorporates the included segment

masks into their own segment mask. If the message was transmitted by the im-

mediate downstream neighbor, the current autonomymode is also stored from the

message. Finally, if the route revision in the message is higher than that of the

currently stored route, the local copy of the routing information is updated.

4.6.4 Transmission Scheduling

Which messages are transmitted by a network node depend upon the node’s role

in the CAPTURE network, as shown in Table 4.1 below.

When transmitting aChunkmessage, the segmentmasks for downstreamnodes

should be used to select what is transmited. Early resource segments that have not
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Chunk Control
Endpoint ×
Hop × ×
Origin ×
Eavesdropper × ×

Table 4.1: Message types transmitted by each of the four node classs.

been received by any nodes closer to the endpoint are the highest priority. In partic-

ular, nodes should start by transmitting the earliest segments for the active resource

that a downstream node is not believed to possess, and continue in-order transmis-

sion of any later segments not held by downstream nodes. When a Control mes-

sage is received from a downstream node, this process starts over by transmitting

the earliest segment now known to not be received.

Using the simulation parameters described in Section 2.3, Fig. 4-4 illustrates

the sensitivity of a CAPTURE network to how frequently acknowlegement mes-

sages are transmitted relative to segments of data. When the ratio is high and ac-

knowledgements are sent infrequently, the odds of toomuchdata being transmitted

before moving on are high. However, transmission rates seems to be relatively in-

sensitive to this scheduling for values near the minima of one control message for

every four to eight chunk messages.

4.6.5 Implementation

Each of the autonomous platforms had a platform driver developed to fit the needs

of their specific software environments. A number of revisions to Goby[100] were

made as part of thiswork, which allowed it to be used as a software abstraction layer

for the acoustic modem on each vehicle. These revisions have now been incorpo-

rated into Goby v2.0. The implementation of the CAPTURE network protocol re-

lied on two packed message types, representing the Chunk and Control messages.

Thesemessages were constructed as 512-bit messages, to fit the requirements of the

physical layer. The specific message definitions that were used are shown in Fig.

4-5 and Figure 4-6.
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Figure 4-4: Illustration of network sensitivity to the ratio of chunkmessages to con-
trol messages. Fig. 4-4a shows the mean time required to receive each resource
preview for a fixed preview size of 1600 bytes. Fig. 4-4b shows the final average
size of the previews. In total, the link was 12km long, and consisted of five evenly
spaced nodes (four hops).
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0 8 16 24 31

Message ID Time of
Launch Resource Origin / ID

. . . Segment ID 56 Byte Segment. . .

Figure 4-5: Definition for Chunk messages used during 2011 field experiments in
Buzzards Bay. The numerical scale across the top displays the number of bits. Each
subsequent row represents additional bits which continue from the row above.
0 8 16 24 31

Message ID Time of
Launch RID Route

M
od

e . . .

. . .Resource Origin / ID End-to-end Reception Count

54 Byte Acknowledgement Masks
. . .

Figure 4-6: Definition for Control messages used during 2011 field experiments in
Buzzards Bay. The numerical scale across the top displays the number of bits. Each
subsequent row represents additional bits which continue from the row above.

Since the entire route is encoded in the control packet, which currently is twelve

bits long (plus three to allow changing the route), this implementation supports

routes containing up to four vehicles, and networks containing seven vehicles in

total. This could easily be expanded for longer routes, consuming only a few addi-

tional bits.

The Chunk and Control messages both contain a time-of-launch field, allowing

the second of transmission to be encoded in amessage. All vehicles in the Buzzard’s

Bay experiment were equipped with a high precision, low-drift clock [33]. By syn-

chronizing each vehicle’s clock at the surface, all nodes can passively measure the

one-way-travel-time (OWTT) of each acoustic broadcast by simply comparing the

encoded time-of-launch and the observed time-of-arrival. Since the sound speed

profile is well known inwater, the inter-vehicle range can be easily computed. Over

time, vehicles within the network can augment each other’s navigation estimates

using these additional range constraints.
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CHAPTER 5

Field Results

CAPTURE has been field tested in three distinct experiments, and four different

network configurations, as shown in Fig. 5-1. All told, these experiments involved

six distinct autonomous platforms, including two different SeaBED AUVs, two dif-

ferent OceanServer Iver AUVs, and a Bluefin 9 AUV. In addition, four manned

surface ship platforms have been used, involving researchers from NOAA, MIT,

WHOI, Northeastern University, University ofMichigan, and Bluefin Robotics Cor-

poration.

In February of 2010, an early version of the CAPTURE architecture was tested

on Lucille, a SeaBED-class[104] AUV owned by NOAA, during a research expedi-

tion aboard the NOAA Ship Oscar Elton Sette. A single dive was performed near

Rota, an island in the Northern Marianas Archipelago[72], ranging in depth be-

tween 100 and 350 meters. No specific constraints were put on the surface ship,

which remained within 600 meters of the vehicle throughout the dive.

In late May of 2011, CAPTURE was extended to operate on a Bluefin 9 AUV

equipped with a “backseat driver” computation stack running theMOOS software

suite. That vehicle is part of ongoing Mine Counter-Measures development, seek-

ing to identify seafloor mine-like objects and transmit their sonar signatures to the

surface for confirmation[73].

In August of 2011, CAPTURE was tested on three autonomous platforms and

onemanned platform operating simultaneously. TwoOceanServer Iver AUVswith

payload and navigation suites custom-developed by theUniversity ofMichigan[32]

provided long-range mid-water-column survey capability, while a SeaBED AUV

provided the ability to capture detailed low-altitude photographic surveys. A pho-
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(a) One Hop (b) Two Hop

(c) Three Hop (d) Route Switch

Figure 5-1: Network configurations which have successfully been used in the field
with CAPTURE. In the fourth example, the vehicle responsible for initiating trans-
missions was changed mid-dive, in response to a request from the surface.
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Figure 5-2: Vehicles used during theCAPTURE ’11 Experiment. The two IverAUVs
are visible center and right, with the SeaBED AUV on the left.

tograph of these vehicles is shown in Fig. 5-2. These platforms were coupled with

a manned surface ship – the R/V Tioga, and a number of dives were performed in

Buzzards Bay, Massachusetts.

5.1 Platform Driver / Resource Acquisition

The Lucille AUV used during the 2010 field experiment is equipped with a five

megapixel Prosilica color camera, featuring a CCD with high dynamic range. Dur-

ing the 2010 field experiment, this camera captured one color image every five sec-

onds at a resolution of 2048×2048 pixels. Those raw, Bayer RGGB encoded, images

were processed and converted to the Y’UV colorspace onboard the AUV’s main

control computer, resulting in 1024× 1024 pixel square full color images.

The Bluefin 9 AUV used during the brief mine counter-measure experiment is

equipped with a MarineSonic sidescan sonar system, which generates 2D imagery
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Figure 5-3: Bluefin 9 AUV prior to deployment, and the sonar imagery transmitted
during the dive.

in a proprietary TIFF-like format after a fixed number of scanlines. A platform

driver was developed to support reading the imagery from the sonar, and to in-

terface with the onboard MOOS autonomy software. Goby software was used to

abstract the interface with the on-board WHOI MicroModem. During a very short

mission, there was time to transmit a single sonar image to the surface from the

AUV, shown in Fig. 5-3.

5.2 Resource Prioritization

To date, our field experiments have relied on a single-resource queuing model to

identify the next resource for transmission. The Lucille AUV used during the 2010

field experiment, and shown in Fig. 5-4, has a single onboard CPU used for both

CAPTURE and vehicle control. To minimize the risk of overloading the onboard
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Figure 5-4: Top: Lucille, a SeaBED AUV, prior to launch near Rota, 2500km south
of Tokyo. Bottom: Transmission progress overlaid on bathymetry.
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CPU’s limited resources, the most recently captured photograph was compressed

every three minutes. This led to several images being compressed but not trans-

mitted, but ensured that new data was always available for transmission. When

CAPTURE was ready to transmit a new resource to the surface, the most recently

compressed new image was selected for transmission.

5.3 Progressive Encoding

The photographic and sonar imagery acquired by the Lucille and Bluefin AUV re-

spectively, were compressed using SPIHT compression, in conjunction with the

Cohen-Daubechies-Feauveau 9/7 wavelet[21]. The MarineSonic sonar source im-

agery was a grayscale image of 1024 × 960 pixels in a proprietary format. For the

color photographic imagery captured by the Lucille AUV, 50% of the encoded data

stream was allocated to luminance data, and 50% to chrominance data. In retro-

spect, allocating a higher proportion to luminance data would have resulted in

more visually pleasing imagery.

During the 2010 field experiment, a total of fifteen color photographs were re-

ceived over the course of a 3.75 hour period. Of the fifteen successfully received

images, four were captured during descent or ascent and were completely black as

a result. The eleven non-black images received are shown in Fig. 5-5 and 5-6. The

fifteen images were transmitted over a 3.75 hour period, resulting in about fifteen

minutes per image, or approximately 35 bits per second achieved. While this low

number is largely due to packet loss and scheduling in real-world conditions, the

modem also varied the level of forward error correction it applied, between en-

codings with maximum theoretical burst rates of 520 and 5400 bits per second, to

obtain richer statistics on transmission success.

During the August 2011 CAPTURE field experiment, extremely murky water

conditions prevented capturing photographs, and pre-captured imagery was used

instead. In addition, one test was performed with a non-progressively encoded

dataset. A short segment of audio, Neil Armstrong’s first words on the surface of
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Figure 5-5: The first six color images captured by the SeaBED-class AUV, com-
pressed in-situ, and transmitted to surface operators.
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Figure 5-6: The final five non-black images returned by the SeaBED vehicle.
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themoon, was compressedwith the Speex voice codec to 4368 bytes. The audiowas

then encrypted using AES with a 256 bit key. Once the full set of encoded packets

had been received, the audio was decoded and successfully played.

5.4 Relay Communication

(a) 41 Segments (b) Log. difference (c) 97 Segments

Figure 5-7: A transmitted grayscale photo prior to, and after requesting additional
refinement. The difference in magnitude is shown between the two versions on a
logarithmic scale to highlight changes.

Three separate successful CAPTURE dives were performed during the most re-

cent field experiment, each testing different capabilities of the networking protocol.

During one trial, data was communicated across a two-hop network as shown in

Fig. 5-1b. After six preview images were sequentially transmitted as 2048 byte

previews, the fourth transmitted image was identified by the surface operator as

warranting further refinement. Upon request, the transmitting vehicle went back

and provided additional data to refine the image, as shown in Fig. 5-7. The origin

eventually transmitted 5529 contiguous bytes of the image before being instructed

to return to automatic selection.

A total of seven images were eventually transmitted, each decoded progres-

sively, with gradually improving reconstructions over the course of the transmis-

sion. CAPTURE was also tested in the three-hop linear network, depicted in Fig.

5-1c, successfully relaying four images across the heterogeneous network.
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In the final experiment, a two-hop network was employed as shown in Figure

5-1d. Four grayscale images were transmitted from an Iver AUV, via a SeaBED

AUV, to the surface. The surface operator then requested a route change, grant-

ing the other Iver AUV the responsibility for transmitting resources. That vehicle

transmitted the pre-loaded encrypted speech, followed by another two grayscale

photos.
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CHAPTER 6

Discussion

Relaying high-resolution scientific data from submerged AUVs over long horizon-

tal distances faces numerous obstacles. In this thesis I have presented an analysis

of these obstacles, along with the design of a unified solution in the form of CAP-

TURE. A networking and compression infrastructure, CAPTURE supports trans-

mission and interactive refinement of sonar and photographic data, along with

scalar environmental measurements.

6.1 Contributions

The specific contributions and characteristics of this work can be divided into those

relating to compression and data selection, and those related more directly to the

CAPTURE networking architecture. To demonstrate the viability of this architec-

ture, I presented both simulated results and real-world results from running CAP-

TURE software in three field experiments, in diverse environments, on SeaBED,

OceanServer and Bluefin AUVs, each employing significantly different software

architectures.

6.1.1 Compression

Whilewavelets have previously been recognized as appropriate for underwater im-

age coding, there are no known examples of using wavelet-based source coding for

scalar telemetry. This work additionally represents the first application of fully em-

bedded encodings to AUV telemetry, allowing decoding to halt after any number of

contiguous packets while still producing the highest quality reproduction for that
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number of bits. I also presented a novel method for highlighting data regions of

interest prior to compressing data with these wavelet coders.

To fill the capability gap between transmitting individual images and transmit-

ting summary statistics, this thesis presents a novel compression technique based

on image synthesis. This strategy provides a very compact representation for im-

agery, utilizing inter-image redundancywhile communicating both the visual ‘gist’

of an image in texture space and allowing computation of texture statistics on the

surface.

CAPTURE takes a hybrid approach to data selection, incorporating both au-

tonomous prioritization and feedback from human operators. There are clear op-

portunities to incorporate high-level autonomy algorithms during the data selec-

tion process. New resources are automatically selected for compression and trans-

mission to the surface barring specific requests from human operators. As humans

are able to view the data being collected by an AUV in real time, they are better

enabled to recognize anomolies and features of interest. Human feedback is ex-

plicitly incorporated into CAPTURE by allowing the identification of scientifically

valuable images or data segments for additional refinement, and allowing refine-

ment up to an arbitrarily high-quality reconstruction. This work represents the

first example of human-driven data-quality selection for scalar AUV telemetry of

underwater AUVs.

6.1.2 Networking

The ocean imposes challenges on underwater networks including high latency, in-

termittent communication, the lack of instantaneous end-to-end connectivity, and

a broadcast medium. This thesis uniquely employs a strategy of comprehensive

data storage at every node and a broadcast-based selective acknowledgement pro-

tocol to combat these challenges. Relying on a “store and forward” architecture,

rather than a simple relay chain, increases the performance of the relay link in poor

conditions.

Most underwater networking research assumes the use of relatively low-cost,
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and low-complexity, static communication nodes. These nodes may be augmented

by one or two AUVs, but the fixed nodes represent the backbone of the network.

Fixed seafloor nodes cost 5-10 times less than even low-cost AUVs, yet untethered

AUV are the most practical option for accessing some environments. This thesis

presents an approach targeted to very small relay networks of AUVs, using the

small network size as an advantage.

6.2 Future Work and Limitations

Geographic routing

Recently there has been significant interest in geographically aware routing

protocols[131, 135], which learn and construct routing tables based on known

node locations. To that end, the one-way-travel-time capabilities in the cur-

rent implementation of CAPTURE allow every vehicle to determine the range

from any overheard transmitter with each transmission. That information is

not currently used, but could be used in the future to aid in routing.

Incorporate network coding

When using random linear network coding[64][18][63], instead of a single

packet being transmitted, a linear combination of several packets is transmit-

ted along with the linear coefficients. After enough of these random packets

have been received, it becomes possible to decode all of the original packets

that were linearly combined. Used strategically, this decreases the frequency

of ARQ required.

Facilitate handling of multiple data sources

While there are no architectural barriers to transmitting data from multiple

data sources, the current implementation does not provide any way to multi-

plex or differentiate between multiple sensors. There are clear opportunities

for both automatic and user-guide approaches to selection of a data source –

as well as opportunities to incorporate more advanced data interest detectors
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on a per-sensor basis, such as image recognition algorithms.

Preview size selection

In the current implementation of CAPTURE, the size of the preview trans-

mitted before the origin moves to a new resource is defined by the resource

type. Incorporating automatic selection of the preview size would allow the

origin to transmit higher quality previews for images that it believes have a

higher likelihood of being interesting. Simple image statistics such as entropy

or luminance would likely be sufficient for this purpose.

User-driven Region of Interest selection

SPIHT does not include any explicit information in the bitstream about which

wavelet coefficients are being encoded, making it challenging to refine only

specific regions of an image. Other embedded wavelet compressors, includ-

ing WDR[120], do support this capability at a small cost to image quality.

Artifact Reduction for Image Synthesis

Transmitting texture information as a low-resolution grid results in blocking

artifacts in the reconstructed image. Additionally, texture class boundaries

are currently handled no differently than constant-texture areas during im-

age synthesis. Explicit handling of class boundaries could improve the sec-

ond issue, and the former could be improved by denser encoding of texture

information. There is also a body of literature on blocking artifact reduction

in Vector Quantization that may be relevant.

Progressive Synthesis Mask Transmission

At an average of 40 bytes, individual texture masks are easy to transmit in

a single transmission. For higher resolution masks, with a larger number of

texture classes, the size of the texture mask could grow significantly. As it in-

creases in size, a progressive transmission scheme for individual texture class

masks based on shape-adaptive SPIHT coding techniques (e.g. [66]) could be

worth investigating.
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Synthesis/Wavelet Hybrid Image Compression

Image Synthesis is effective at encoding repetitive background textures (like

sand), but does not encode objects, or unrecognized texture areas. A hybrid

approach could be developed that uses Image Synthesis to compress the back-

ground of each image, and embedded wavelet compression to encode any

‘significant’ foreground objects, based on some significance metric.

6.3 Modem Suggestions

Although most testing and development took place on the WHOI Micro-Modem,

this work is designed to be independent of the specific physical layer used for com-

munication. The modem provides as robust a physical layer as can be hoped given

the underwater environment, yet the modem’s interface to higher-level applica-

tions imposes several limitations. Many of these limitations stem from the age of

the underlying hardware, which is in the process of a major revision. Three key

changes that would make the Micro-Modem easier to use with AUVs are:

• A greater independence between MTU and FEC

• The ability to include custom header metadata in packets

• A “raw” modulation mode and “best-effort” decoding

The Maximum Transmission Unit of the WHOI Micro-Modem depends upon

the level of FEC selected for channel coding. Depending on the specific level of cod-

ing selected, theMTUmay be 32, 64, or 256 bytes. This variabilitymakes it challeng-

ing to select an FEC level based solely on the current channel quality, as it imposes

constraints on the higher level network layers. Indeed, 32 bytes is a relatively small

MTU, and imposes fragmentation on all but themost trivial ofmessages. Evenwith

64 byte frames, a few bytes of header metadata stands out as a significant cost. In

[7] an optimal packet size is derived for multi-hop relay networks, based upon sim-

ulated results with two realistic MAC protocols. The optimum size varies with the
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specific simulation parameters, but is generally a few hundred to a few thousand

bytes.

Packet transmissions from the Micro-Modem contain a heavily protected meta-

data header, including a 7-bit source ID and 7-bit destination ID. Even when the

bulk of a message is lost, this header information frequently remains decodable.

The ability to include custom heavily protected metadata in this header would

allow routing information and other critical metadata to receive protection, even

when the FEC applied to the rest of the frame is low.

When a packet is received by the Micro-Modem a CRC, or “checksum”, is com-

puted. If the computed checksum does not match one encoded in the packet, the

packet is dropped and not presented to the user. This makes it challenging to apply

error correction customized to your dataset (though not impossible, as described

further below). If themodem reported a best-estimate decoding in the case of failed

CRC’s, possibly alongwith hard decisions from the equalizer, FEC could be applied

in software as well as in the modem firmware.

As a direct result of this work, each of these interface suggestions is being ac-

tively considered for incorporation into the next version of theWHOIMicro-Modem,

and some are already being implemented.
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